DNASE1L1

Last updated • 3 min readFrom Wikipedia, The Free Encyclopedia
DNASE1L1
Identifiers
Aliases DNASE1L1 , DNAS1L1, DNASEX, DNL1L, G4.8, XIB, deoxyribonuclease I-like 1, deoxyribonuclease 1 like 1
External IDs OMIM: 300081 MGI: 109628 HomoloGene: 4896 GeneCards: DNASE1L1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001009932
NM_001009933
NM_001009934
NM_001303620
NM_006730

Contents

NM_001172154
NM_027109
NM_001370787

RefSeq (protein)

NP_001009932
NP_001009933
NP_001009934
NP_001290549
NP_006721

NP_001165625
NP_081385
NP_001357716

Location (UCSC) Chr X: 154.4 – 154.41 Mb Chr X: 73.32 – 73.33 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Deoxyribonuclease-1-like 1 is an enzyme that in humans is encoded by the DNASE1L1 gene. [5] [6] [7] It is also known as DNaseX due to its localisation on the X chromosome . [8]

This gene encodes a member of the deoxyribonuclease family and the protein and DNA shows high sequence similarity to lysosomal DNase I. Alternate transcriptional splice variants, encoding the same protein, have been characterized. [7]

The DNase1L1/DNaseX gene was discovered in the early 1990s by Johannes F. Coy as a member of the Molecular Genome Analysis research project at the DKFZ (German Cancer Research Center) in Heidelberg and first published in 1996. [8] [9]

Just like the DNase I enzyme produced by the DNase I gene, the DNase1L1 (DNaseX) enzyme produced by the DNase1L1 (DNaseX) gene cuts double-stranded deoxyribonucleic acid (DNA) molecular chains into pieces. The cutting of DNA into 300-base pair pieces represents the final step in the execution of programmed cell death (apoptosis). Cells can then no longer perform cell division and thus cannot develop into tumor cells. DNase I and DNase1L1 (DNaseX) carry out programmed cell death (apoptosis) and thus protect the human body from the development of tumor cells. Conversely, the absence of DNase enzyme activity leads to the increased formation of tumor cells, as the execution of apoptosis is prevented. [10] [11]

Importance

A fundamental common feature of all tumors is the disruption of apoptosis. Degenerated cells thus evade self-destruction, continue to grow and carry the risk of further degeneration through further mutations and increase in aggressiveness and malignancy. [12]

DNaseX (DNase1L1) has a special feature that makes it suitable as a marker for the detection of cancer. The concentration of the DNaseX enzyme increases in tumor cells - in contrast to other DNases, whose concentration decreases in the course of tumor development. [13]

DNaseX is generally produced in greater quantities in tumor cells in order to induce the desired programmed cell death. However, by synthesizing specific inhibitors, the tumor cell can suppress the enzyme activity of DNaseX and thus prevent the final apoptosis step, the DNA cutting. [12]

The accumulation of DNaseX has been detected in all premalignant and malignant tumor types examined to date. The accumulation in cells occurs when DNaseX cannot fulfill its task. Then the cell continues to produce the DNaseX protein because it wants to induce apoptosis. This situation leads to higher and higher concentrations of DNaseX in the cell. If a DNaseX overproduction can be detected, this can be taken as an indicator of impaired apoptosis and as an indication of the development of tumors in the body. [14] [15] [16]

The Apo10 epitope plays a special role in this process. This characteristic section of the protein sequence of the DNaseX enzyme can be identified diagnostically using the same-named monoclonal antibody Apo10 (DJ28D4). [16] [17] [18] [19]      

The resulting accumulation of DNaseX (Apo10) in the nucleus also makes the detection easier - since the amount of Apo10 in the nucleus increases sharply.    

Clinical application

DNaseX (Apo10) is already applied in diagnostic cancer screening. The enzymes DNaseX (Apo10) and TKTL1 are detected in PanTum Detect, a blood test used in combination with imaging techniques such as MRI and PET-CT for the early detection of cancer. [20] The detection of DNaseX (Apo10) and TKTL1 in immune cells using EDIM technology provides clues to possible tumor disease. [15] [21] In case of an abnormal result, clarification by imaging techniques is recommended. [20]

Related Research Articles

<span class="mw-page-title-main">Antigen</span> Molecule triggering an immune response (antibody production) in the host

In immunology, an antigen (Ag) is a molecule, moiety, foreign particulate matter, or an allergen, such as pollen, that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune response.

<span class="mw-page-title-main">Apoptosis</span> Programmed cell death in multicellular organisms

Apoptosis is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes include blebbing, cell shrinkage, nuclear fragmentation, chromatin condensation, DNA fragmentation, and mRNA decay. The average adult human loses between 50 and 70 billion cells each day due to apoptosis. For an average human child between eight and fourteen years old, approximately twenty to thirty billion cells die per day.

Deoxyribonuclease refers to a group of glycoprotein endonucleases which are enzymes that catalyze the hydrolytic cleavage of phosphodiester linkages in the DNA backbone, thus degrading DNA. The role of the DNase enzyme in cells includes breaking down extracellular DNA (ecDNA) excreted by apoptosis, necrosis, and neutrophil extracellular traps (NET) of cells to help reduce inflammatory responses that otherwise are elicited. A wide variety of deoxyribonucleases are known and fall into one of two families, which differ in their substrate specificities, chemical mechanisms, and biological functions. Laboratory applications of DNase include purifying proteins when extracted from prokaryotic organisms. Additionally, DNase has been applied as a treatment for diseases that are caused by ecDNA in the blood plasma. Assays of DNase are emerging in the research field as well.

In the field of genetics, a suicide gene is a gene that will cause a cell to kill itself through the process of apoptosis. Activation of a suicide gene can cause death through a variety of pathways, but one important cellular "switch" to induce apoptosis is the p53 protein. Stimulation or introduction of suicide genes is a potential way of treating cancer or other proliferative diseases.

<span class="mw-page-title-main">Immunohistochemistry</span> Common application of immunostaining

Immunohistochemistry (IHC) is the most common application of immunostaining. It involves the process of selectively identifying antigens (proteins) in cells of a tissue section by exploiting the principle of antibodies binding specifically to antigens in biological tissues. IHC takes its name from the roots "immuno", in reference to antibodies used in the procedure, and "histo", meaning tissue. Albert Coons conceptualized and first implemented the procedure in 1941.

<span class="mw-page-title-main">Epigenome</span> Biological term

An epigenome consists of a record of the chemical changes to the DNA and histone proteins of an organism; these changes can be passed down to an organism's offspring via transgenerational stranded epigenetic inheritance. Changes to the epigenome can result in changes to the structure of chromatin and changes to the function of the genome.

<span class="mw-page-title-main">TRAIL</span> Mammalian protein

In the field of cell biology, TNF-related apoptosis-inducing ligand (TRAIL), is a protein functioning as a ligand that induces the process of cell death called apoptosis.

<span class="mw-page-title-main">Angiogenin</span> Protein-coding gene in the species Homo sapiens

Angiogenin (ANG) also known as ribonuclease 5 is a small 123 amino acid protein that in humans is encoded by the ANG gene. Angiogenin is a potent stimulator of new blood vessels through the process of angiogenesis. Ang hydrolyzes cellular RNA, resulting in modulated levels of protein synthesis and interacts with DNA causing a promoter-like increase in the expression of rRNA. Ang is associated with cancer and neurological disease through angiogenesis and through activating gene expression that suppresses apoptosis.

<span class="mw-page-title-main">Deoxyribonuclease I</span> Protein-coding gene in the species Homo sapiens

Deoxyribonuclease I, is an endonuclease of the DNase family coded by the human gene DNASE1. DNase I is a nuclease that cleaves DNA preferentially at phosphodiester linkages adjacent to a pyrimidine nucleotide, yielding 5'-phosphate-terminated polynucleotides with a free hydroxyl group on position 3', on average producing tetranucleotides. It acts on single-stranded DNA, double-stranded DNA, and chromatin. In addition to its role as a waste-management endonuclease, it has been suggested to be one of the deoxyribonucleases responsible for DNA fragmentation during apoptosis.

Deoxyribonuclease II is an endonuclease that hydrolyzes phosphodiester linkages of deoxyribonucleotide in native and denatured DNA, yielding products with 3'-phosphates and 5'-hydroxyl ends, which occurs as a result of single-strand cleaving mechanism. As the name implies, it functions optimally at acid pH because it is commonly found in low pH environment of lysosomes.

<span class="mw-page-title-main">Fas receptor</span> Protein found in humans

The Fas receptor, also known as Fas, FasR, apoptosis antigen 1, cluster of differentiation 95 (CD95) or tumor necrosis factor receptor superfamily member 6 (TNFRSF6), is a protein that in humans is encoded by the FAS gene. Fas was first identified using a monoclonal antibody generated by immunizing mice with the FS-7 cell line. Thus, the name Fas is derived from FS-7-associated surface antigen.

Deoxyribonuclease IV (phage-T4-induced) is catalyzes the degradation nucleotides in DsDNA by attacking the 5'-terminal end.

<span class="mw-page-title-main">Flap structure-specific endonuclease 1</span> Protein-coding gene in the species Homo sapiens

Flap endonuclease 1 is an enzyme that in humans is encoded by the FEN1 gene.

<span class="mw-page-title-main">Decoy receptor 2</span> Protein-coding gene in the species Homo sapiens

Decoy receptor 2 (DCR2), also known as TRAIL receptor 4 (TRAILR4) and tumor necrosis factor receptor superfamily member 10D (TNFRSF10D), is a human cell surface receptor of the TNF-receptor superfamily.

<span class="mw-page-title-main">DNASE1L3</span> Protein-coding gene in the species Homo sapiens

Deoxyribonuclease gamma is an enzyme that in humans is encoded by the DNASE1L3 gene.

<span class="mw-page-title-main">TKTL1</span> Mammalian protein found in Homo sapiens

Transketolase-like-1 (TKTL1) is a gene closely related to the transketolase gene (TKT). It emerged in mammals during the course of evolution and, according to the latest research findings, is considered one of the key genes that distinguishes modern humans from Neanderthals.

<span class="mw-page-title-main">DNASE1L2</span> Protein-coding gene in the species Homo sapiens

Deoxyribonuclease-1-like 2 is an enzyme that in humans is encoded by the DNASE1L2 gene.

<span class="mw-page-title-main">Caspase-activated DNase</span> Protein-coding gene in the species Homo sapiens

Caspase-activated DNase (CAD) or DNA fragmentation factor subunit beta is a protein that in humans is encoded by the DFFB gene. It breaks up the DNA during apoptosis and promotes cell differentiation. It is usually an inactive monomer inhibited by ICAD. This is cleaved before dimerization.

<span class="mw-page-title-main">ADP/ATP translocase 2</span> Protein-coding gene in humans

ADP/ATP translocase 2 is a protein that in humans is encoded by the SLC25A5 gene on the X chromosome.

Epitope Detection in Monocytes (EDIM) is a technology that uses the innate immune system's mechanisms to detect biomarkers or antigens in immune cells. It is a non-invasive form of liquid biopsy, i.e. biopsy from blood, which analyzes activated macrophages (CD14+/CD16+) for disease-specific epitopes, such as tumor cell components.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000013563 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000019088 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Parrish JE, Ciccodicola A, Wehhert M, Cox GF, Chen E, Nelson DL (September 1995). "A muscle-specific DNase I-like gene in human Xq28". Human Molecular Genetics. 4 (9): 1557–1564. doi:10.1093/hmg/4.9.1557. PMID   8541839.
  6. Pergolizzi R, Appierto V, Bosetti A, DeBellis GL, Rovida E, Biunno I (February 1996). "Cloning of a gene encoding a DNase I-like endonuclease in the human Xq28 region". Gene. 168 (2): 267–270. doi:10.1016/0378-1119(95)00741-5. PMID   8654957.
  7. 1 2 "DNASE1L1 deoxyribonuclease I-like 1". Entrez Gene. U.S. National Library of Medicine.
  8. 1 2 Coy JF, Velhagen I, Himmele R, Delius H, Poustka A, Zentgraf H (April 1996). "Isolation, differential splicing and protein expression of a DNase on the human X chromosome". Cell Death and Differentiation. 3 (2): 199–206. PMID   17180083.
  9. EP0842278B1,Zentgraf, Hanswalter; Poustka, Annemarie& Coy, Johanneset al.,"Protein mit dnase-aktivität",issued 2005-11-09
  10. Samejima K, Earnshaw WC (September 2005). "Trashing the genome: the role of nucleases during apoptosis". Nature Reviews. Molecular Cell Biology. 6 (9): 677–688. doi:10.1038/nrm1715. PMID   16103871. S2CID   13948545.
  11. Shiokawa D, Kobayashi T, Tanuma S (August 2002). "Involvement of DNase gamma in apoptosis associated with myogenic differentiation of C2C12 cells". The Journal of Biological Chemistry. 277 (34): 31031–31037. doi: 10.1074/jbc.M204038200 . PMID   12050166.
  12. 1 2 Taper HS (2008). "Altered deoxyribonuclease activity in cancer cells and its role in non toxic adjuvant cancer therapy with mixed vitamins C and K3". Anticancer Research. 28 (5A): 2727–2732. PMID   19035302.
  13. Zanotti S, Fisseler-Eckhoff A, Mannherz HG (June 2003). "Changes in the topological expression of markers of differentiation and apoptosis in defined stages of human cervical dysplasia and carcinoma". Gynecologic Oncology. 89 (3): 376–384. doi:10.1016/s0090-8258(03)00061-1. PMID   12798698.
  14. Grimm M, Schmitt S, Teriete P, Biegner T, Stenzl A, Hennenlotter J, et al. (December 2013). "A biomarker based detection and characterization of carcinomas exploiting two fundamental biophysical mechanisms in mammalian cells". BMC Cancer. 13: 569. doi:10.1186/1471-2407-13-569. PMC   4235042 . PMID   24304513.
  15. 1 2 Urla C, Stagno MJ, Schmidt A, Handgretinger R, Fuchs J, Warmann SW, Schmid E (July 2022). "Epitope Detection in Monocytes (EDIM) As a New Method of Liquid Biopsy in Pediatric Rhabdomyosarcoma". Biomedicines. 10 (8): 1812. doi: 10.3390/biomedicines10081812 . PMC   9404738 . PMID   36009359.
  16. 1 2 Grimm M, Feyen O, Coy JF, Hofmann H, Teriete P, Reinert S (March 2016). "Analysis of circulating CD14+/CD16+ monocyte-derived macrophages (MDMs) in the peripheral blood of patients with oral squamous cell carcinoma". Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 121 (3): 301–306. doi:10.1016/j.oooo.2015.10.024. PMID   26747736.
  17. Rotmann AR, Hofmann HA, Coy JF (October 2012). "O583 Apol0 - A New Biomarker for Early Detection of Disorders of Cell Proliferation and Solid Tumours". International Journal of Gynecology & Obstetrics. 119: S466–S467. doi:10.1016/S0020-7292(12)61013-3. S2CID   76313286.
  18. Saman S, Stagno MJ, Warmann SW, Malek NP, Plentz RR, Schmid E (2020). "Biomarkers Apo10 and TKTL1: Epitope-detection in monocytes (EDIM) as a new diagnostic approach for cholangiocellular, pancreatic and colorectal carcinoma". Cancer Biomarkers. 27 (1): 129–137. doi:10.3233/CBM-190414. PMC   7029314 . PMID   31771043.
  19. Lian F, Smith DE, Ernst H, Russell RM, Wang XD (July 2007). "Apo-10'-lycopenoic acid inhibits lung cancer cell growth in vitro, and suppresses lung tumorigenesis in the A/J mouse model in vivo". Carcinogenesis. 28 (7): 1567–1574. doi:10.1093/carcin/bgm076. PMID   17420169.
  20. 1 2 Burg S, Grust AL, Feyen O, Failing K, Banat GA, Coy JF, et al. (2022-05-20). "Blood-Test Based Targeted Visualization Enables Early Detection of Premalignant and Malignant Tumors in Asymptomatic Individuals" (PDF). Journal of Clinical and Medical Images. 6 (9): 1–2. Retrieved 2023-01-16.
  21. Stagno MJ, Schmidt A, Bochem J, Urla C, Handgretinger R, Cabanillas Stanchi KM, et al. (October 2022). "Epitope detection in monocytes (EDIM) for liquid biopsy including identification of GD2 in childhood neuroblastoma-a pilot study". British Journal of Cancer. 127 (7): 1324–1331. doi:10.1038/s41416-022-01855-x. PMC   9519569 . PMID   35864157.

Further reading