DPPA3

Last updated
DPPA3
Identifiers
Aliases DPPA3 , STELLA, developmental pluripotency associated 3, Pgc7
External IDs OMIM: 608408 HomoloGene: 138483 GeneCards: DPPA3
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_199286

n/a

RefSeq (protein)

NP_954980

n/a

Location (UCSC) Chr 12: 7.71 – 7.72 Mb n/a
PubMed search [2] n/a
Wikidata
View/Edit Human

Developmental pluripotency-associated protein 3 is a protein that in humans is encoded by the DPPA3 gene. [3]

This gene encodes a protein that in mice may function as a maternal factor during the preimplantation stage of development. In mice, this gene may play a role in transcriptional repression, cell division, and maintenance of cell pluripotentiality. In humans, related intronless loci are located on chromosomes 14 and X. [3]

Related Research Articles

<span class="mw-page-title-main">Germ cell</span> Gamete-producing cell

A germ cell is any cell that gives rise to the gametes of an organism that reproduces sexually. In many animals, the germ cells originate in the primitive streak and migrate via the gut of an embryo to the developing gonads. There, they undergo meiosis, followed by cellular differentiation into mature gametes, either eggs or sperm. Unlike animals, plants do not have germ cells designated in early development. Instead, germ cells can arise from somatic cells in the adult, such as the floral meristem of flowering plants.

<span class="mw-page-title-main">Oct-4</span> Mammalian protein found in Homo sapiens

Oct-4, also known as POU5F1, is a protein that in humans is encoded by the POU5F1 gene. Oct-4 is a homeodomain transcription factor of the POU family. It is critically involved in the self-renewal of undifferentiated embryonic stem cells. As such, it is frequently used as a marker for undifferentiated cells. Oct-4 expression must be closely regulated; too much or too little will cause differentiation of the cells.

<span class="mw-page-title-main">Homeobox protein NANOG</span> Mammalian protein found in humans

Homeobox protein NANOG(hNanog) is a transcriptional factor that helps embryonic stem cells (ESCs) maintain pluripotency by suppressing cell determination factors. hNanog is encoded in humans by the NANOG gene. Several types of cancer are associated with NANOG.

In biology, reprogramming refers to erasure and remodeling of epigenetic marks, such as DNA methylation, during mammalian development or in cell culture. Such control is also often associated with alternative covalent modifications of histones.

In developmental biology, the cells that give rise to the gametes are often set aside during embryonic cleavage. During development, these cells will differentiate into primordial germ cells, migrate to the location of the gonad, and form the germline of the animal.

<span class="mw-page-title-main">Induced pluripotent stem cell</span> Pluripotent stem cell generated directly from a somatic cell

Induced pluripotent stem cells are a type of pluripotent stem cell that can be generated directly from a somatic cell. The iPSC technology was pioneered by Shinya Yamanaka and Kazutoshi Takahashi in Kyoto, Japan, who together showed in 2006 that the introduction of four specific genes, collectively known as Yamanaka factors, encoding transcription factors could convert somatic cells into pluripotent stem cells. Shinya Yamanaka was awarded the 2012 Nobel Prize along with Sir John Gurdon "for the discovery that mature cells can be reprogrammed to become pluripotent."

<span class="mw-page-title-main">SOX2</span> Transcription factor gene of the SOX family

SRY -box 2, also known as SOX2, is a transcription factor that is essential for maintaining self-renewal, or pluripotency, of undifferentiated embryonic stem cells. Sox2 has a critical role in maintenance of embryonic and neural stem cells.

<span class="mw-page-title-main">SON (gene)</span> Protein-coding gene in the species Homo sapiens

SON protein is a protein that in humans is encoded by the SON gene.

<span class="mw-page-title-main">HTATSF1</span> Protein-coding gene in the species Homo sapiens

HIV Tat-specific factor 1 is a protein that in humans is encoded by the HTATSF1 gene.

<span class="mw-page-title-main">HOXA7</span> Protein-coding gene in the species Homo sapiens

Homeobox protein Hox-A7 is a protein that in humans is encoded by the HOXA7 gene.

<span class="mw-page-title-main">DAZ2</span> Protein-coding gene in the species Homo sapiens

Deleted in azoospermia protein 2 is a protein that in humans is encoded by the DAZ2 gene.

<span class="mw-page-title-main">DNMT3L</span> Protein-coding gene in the species Homo sapiens

DNA (cytosine-5)-methyltransferase 3-like is an enzyme that in humans is encoded by the DNMT3L gene.

<span class="mw-page-title-main">Developmental pluripotency associated 2</span> Protein-coding gene in the species Homo sapiens

Developmental pluripotency-associated protein 2 is a protein that in humans is encoded by the DPPA2 gene.

<span class="mw-page-title-main">PUM2</span> Protein-coding gene in the species Homo sapiens

Pumilio homolog 2 is an RNA-binding protein that in humans is encoded by the PUM2 gene.

<span class="mw-page-title-main">DMRT1</span> Protein-coding gene in humans

Doublesex and mab-3 related transcription factor 1, also known as DMRT1, is a protein which in humans is encoded by the DMRT1 gene.

<span class="mw-page-title-main">CNTRL</span> Protein-coding gene in the species Homo sapiens

Centriolin is a protein that in humans is encoded by the CNTRL gene. It was previously known as CEP110.

<span class="mw-page-title-main">ZFX</span> Protein-coding gene in the species Homo sapiens

Zinc finger X-chromosomal protein is a protein that in mammals is encoded by the ZFX gene of the X chromosome.

<span class="mw-page-title-main">MAK (gene)</span> Protein-coding gene in the species Homo sapiens

Serine/threonine-protein kinase MAK is an enzyme that in humans is encoded by the MAK gene.

<span class="mw-page-title-main">Rex1</span> Known marker of pluripotency, and is usually found in undifferentiated embryonic stem cells

Rex1 (Zfp-42) is a known marker of pluripotency, and is usually found in undifferentiated embryonic stem cells. In addition to being a marker for pluripotency, its regulation is also critical in maintaining a pluripotent state. As the cells begin to differentiate, Rex1 is severely and abruptly downregulated.

<span class="mw-page-title-main">Cell potency</span> Ability of a cell to differentiate into other cell types

Cell potency is a cell's ability to differentiate into other cell types. The more cell types a cell can differentiate into, the greater its potency. Potency is also described as the gene activation potential within a cell, which like a continuum, begins with totipotency to designate a cell with the most differentiation potential, pluripotency, multipotency, oligopotency, and finally unipotency.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000187569 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. 1 2 "Entrez Gene: DPPA3 developmental pluripotency associated 3".

Further reading