Daniel Wayne Hooper | |
---|---|
Born | Minnesota, United States | 16 December 1976
Alma mater | University of Wisconsin–Madison (PhD) |
Known for | Research in dark matter, particle physics, and cosmology |
Scientific career | |
Fields | Physics, Cosmology, Astrophysics |
Institutions | Fermilab, University of Chicago, University of Oxford, University of Wisconsin–Madison |
Doctoral advisor | Francis Halzen |
Daniel Wayne Hooper (born December 16, 1976) is an American cosmologist and particle physicist specializing in the areas of dark matter, cosmic rays, and neutrino astrophysics. He is a senior scientist at Fermi National Accelerator Laboratory [1] and a professor of astronomy and astrophysics at the University of Chicago. [2]
Hooper is the author of several books, including Dark Cosmos: In Search of our Universe’s Missing Mass and Energy (2006), [3] Nature’s Blueprint: Supersymmetry and the Search for a Unified Theory of Matter and Force (2008), [4] and At the Edge of Time: Exploring the Mysteries of Our Universe's First Seconds (2019). [5]
Hooper received his PhD in physics in 2003 from the University of Wisconsin, [2] under the supervision of Francis Halzen. He was a postdoctoral researcher at the University of Oxford between 2003 and 2005, and the David Schramm Fellow at Fermi National Accelerator Laboratory (Fermilab) from 2005 until 2007. [6] He is currently a senior scientist at Fermilab [1] and a professor in the astronomy and astrophysics department at the University of Chicago. [2] He is also a member of the Kavli Institute for Cosmological Physics (KICP) at the University of Chicago. [7] Since 2017, he has been the head of Fermilab's Theoretical Astrophysics Group. [1]
Hooper has authored or co-authored over 200 articles published in peer-reviewed scientific journals. [8] The most highly cited of these papers includes a 2005 review of dark matter (co-authored by Gianfranco Bertone and Joseph Silk), [9] as well as a series of papers written between 2009 and 2014 on the Fermi Gamma-Ray Space Telescope's Galactic Center excess and its possible connection to annihilating dark matter. [10] [11] [12] [13] In 2017 he was elected to become a fellow of the American Physical Society, "For pursuing the identity of dark matter by combining careful analysis of observational data with theoretical ideas from both particle physics and astrophysics." [14]
On September 9, 2024, Hooper will begin his role as the director of the Wisconsin IceCube Particle Astrophysics Center (WIPAC). He will hold a joint faculty appointment at the UW-Madison Department of Physics. [15]
Hooper is the author of two books published by Smithsonian Books/HarperCollins. The first, Dark Cosmos: In Search of our Universe’s Missing Mass and Energy (2006) was named a notable book by Seed Magazine. [16] His second book, Nature’s Blueprint: Supersymmetry and the Search for a Unified Theory of Matter and Force (2008), was called "essential reading" by New Scientist. [4]
Hooper's third book is At the Edge of Time: Exploring the Mysteries of Our Universe's First Seconds (2019), published by Princeton University Press. [5]
Since 2020, Dan Hooper and Shalma Wegsman have run the physics podcast Why This Universe? which appears every other week. [17]
Hooper has also written for popular magazines including Astronomy, [18] Sky and Telescope, [19] and New Scientist, [20] and appeared on television and radio programs including Through the Wormhole with Morgan Freeman (season 4), BBC's Horizon , [21] BBC World News , Space's Deepest Secrets, [21] and NPR's Science Friday . [22] [23] [24]
In modern physics, antimatter is defined as matter composed of the antiparticles of the corresponding particles in "ordinary" matter, and can be thought of as matter with reversed charge, parity, and time, known as CPT reversal. Antimatter occurs in natural processes like cosmic ray collisions and some types of radioactive decay, but only a tiny fraction of these have successfully been bound together in experiments to form antiatoms. Minuscule numbers of antiparticles can be generated at particle accelerators; however, total artificial production has been only a few nanograms. No macroscopic amount of antimatter has ever been assembled due to the extreme cost and difficulty of production and handling. Nonetheless, antimatter is an essential component of widely available applications related to beta decay, such as positron emission tomography, radiation therapy, and industrial imaging.
In astronomy, dark matter is a hypothetical form of matter that does not interact with light or other electromagnetic radiation. Dark matter is implied by gravitational effects which cannot be explained by general relativity unless more matter is present than can be observed. Such effects occur in the context of formation and evolution of galaxies, gravitational lensing, the observable universe's current structure, mass position in galactic collisions, the motion of galaxies within galaxy clusters, and cosmic microwave background anisotropies.
Weakly interacting massive particles (WIMPs) are hypothetical particles that are one of the proposed candidates for dark matter.
Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest include planets, moons, stars, nebulae, galaxies, meteoroids, asteroids, and comets. Relevant phenomena include supernova explosions, gamma ray bursts, quasars, blazars, pulsars, and cosmic microwave background radiation. More generally, astronomy studies everything that originates beyond Earth's atmosphere. Cosmology is a branch of astronomy that studies the universe as a whole.
In supersymmetry, the neutralino is a hypothetical particle. In the Minimal Supersymmetric Standard Model (MSSM), a popular model of realization of supersymmetry at a low energy, there are four neutralinos that are fermions and are electrically neutral, the lightest of which is stable in an R-parity conserved scenario of MSSM. They are typically labeled
N͂0
1,
N͂0
2,
N͂0
3 and
N͂0
4 although sometimes is also used when is used to refer to charginos.
The Fermi Gamma-ray Space Telescope, formerly called the Gamma-ray Large Area Space Telescope (GLAST), is a space observatory being used to perform gamma-ray astronomy observations from low Earth orbit. Its main instrument is the Large Area Telescope (LAT), with which astronomers mostly intend to perform an all-sky survey studying astrophysical and cosmological phenomena such as active galactic nuclei, pulsars, other high-energy sources and dark matter. Another instrument aboard Fermi, the Gamma-ray Burst Monitor, is being used to study gamma-ray bursts and solar flares.
MAGIC is a system of two Imaging Atmospheric Cherenkov telescopes situated at the Roque de los Muchachos Observatory on La Palma, one of the Canary Islands, at about 2200 m above sea level. MAGIC detects particle showers released by gamma rays, using the Cherenkov radiation, i.e., faint light radiated by the charged particles in the showers. With a diameter of 17 meters for the reflecting surface, it was the largest in the world before the construction of H.E.S.S. II.
Michael S. Turner is an American theoretical cosmologist who coined the term dark energy in 1998. He is the Rauner Distinguished Service Professor Emeritus of Physics at the University of Chicago, having previously served as the Bruce V. & Diana M. Rauner Distinguished Service Professor, and as the assistant director for Mathematical and Physical Sciences for the US National Science Foundation.
VERITAS is a major ground-based gamma-ray observatory with an array of four 12 meter optical reflectors for gamma-ray astronomy in the GeV – TeV photon energy range. VERITAS uses the Imaging Atmospheric Cherenkov Telescope technique to observe gamma rays that cause particle showers in Earth's atmosphere that are known as extensive air showers. The VERITAS array is located at the Fred Lawrence Whipple Observatory, in southern Arizona, United States. The VERITAS reflector design is similar to the earlier Whipple 10-meter gamma-ray telescope, located at the same site, but is larger in size and has a longer focal length for better control of optical aberrations. VERITAS consists of an array of imaging telescopes deployed to view atmospheric Cherenkov showers from multiple locations to give the highest sensitivity in the 100 GeV – 10 TeV band. This very high energy observatory, completed in 2007, effectively complements the Large Area Telescope (LAT) of the Fermi Gamma-ray Space Telescope due to its larger collection area as well as coverage in a higher energy band.
Light dark matter, in astronomy and cosmology, are dark matter weakly interacting massive particles (WIMPS) candidates with masses less than 1 GeV. These particles are heavier than warm dark matter and hot dark matter, but are lighter than the traditional forms of cold dark matter, such as Massive Compact Halo Objects (MACHOs). The Lee-Weinberg bound limits the mass of the favored dark matter candidate, WIMPs, that interact via the weak interaction to GeV. This bound arises as follows. The lower the mass of WIMPs is, the lower the annihilation cross section, which is of the order , where m is the WIMP mass and M the mass of the Z-boson. This means that low mass WIMPs, which would be abundantly produced in the early universe, freeze out much earlier and thus at a higher temperature, than higher mass WIMPs. This leads to a higher relic WIMP density. If the mass is lower than GeV the WIMP relic density would overclose the universe.
Gamma-ray astronomy is a subfield of astronomy where scientists observe and study celestial objects and phenomena in outer space which emit cosmic electromagnetic radiation in the form of gamma rays, i.e. photons with the highest energies at the very shortest wavelengths. Radiation below 100 keV is classified as X-rays and is the subject of X-ray astronomy.
In cosmology, primordial black holes (PBHs) are hypothetical black holes that formed soon after the Big Bang. In the inflationary era and early radiation-dominated universe, extremely dense pockets of subatomic matter may have been tightly packed to the point of gravitational collapse, creating primordial black holes without the supernova compression typically needed to make black holes today. Because the creation of primordial black holes would pre-date the first stars, they are not limited to the narrow mass range of stellar black holes.
Multi-messenger astronomy is the coordinated observation and interpretation of multiple signals received from the same astronomical event. Many types of cosmological events involve complex interactions between a variety of astrophysical processes, each of which may independently emit signals of a characteristic "messenger" type: electromagnetic radiation, gravitational waves, neutrinos, and cosmic rays. When received on Earth, identifying that disparate observations were generated by the same source can allow for improved reconstruction or a better understanding of the event, and reveals more information about the source.
Elena Aprile is an Italian-American experimental particle physicist. She has been a professor of physics at Columbia University since 1986. She is the founder and spokesperson of the XENON Dark Matter Experiment. Aprile is well known for her work with noble liquid detectors and for her contributions to particle astrophysics in the search for dark matter.
The CALorimetric Electron Telescope (CALET) is a space telescope being mainly used to perform high precision observations of electrons and gamma rays. It tracks the trajectory of electrons, protons, nuclei, and gamma rays and measures their direction, charge and energy, which may help understand the nature of dark matter or nearby sources of high-energy particle acceleration.
Angela Villela Olinto is an American astroparticle physicist who is the provost of Columbia University. Previously, she served as the Albert A. Michelson Distinguished Service Professor at the University of Chicago as well as the dean of the Physical Sciences Division. Her current work is focused on understanding the origin of high-energy cosmic rays, gamma rays, and neutrinos.
The Galactic Center GeV Excess (GCE) is an unexpected surplus of gamma-ray radiation in the center of the Milky Way galaxy. This spherical source of radiation was first detected in 2009 by the Fermi Gamma-ray Space Telescope and is unexplained by direct observation. Two percent of the gamma ray radiation in a 30° radius circle around the galactic center is attributed to the GCE. As of 2020, this excessive gamma-ray radiation is not well understood by astronomers.
Joshua A. Frieman is a theoretical astrophysicist who lives and works in the United States. He is a senior scientist at Fermilab and a professor of astronomy and astrophysics at the University of Chicago. Frieman is known for his work studying dark energy and cosmology, and he co-founded the Dark Energy Survey experiment. He was elected a member of the National Academy of Sciences in 2022.
Indirect detection of dark matter is a method of searching for dark matter that focuses on looking for the products of dark matter interactions rather than the dark matter itself. Contrastingly, direct detection of dark matter looks for interactions of dark matter directly with atoms. There are experiments aiming to produce dark matter particles using colliders. Indirect searches use various methods to detect the expected annihilation cross sections for weakly interacting massive particles (WIMPs). It is generally assumed that dark matter is stable, that dark matter interacts with Standard Model particles, that there is no production of dark matter post-freeze-out, and that the universe is currently matter-dominated, while the early universe was radiation-dominated. Searches for the products of dark matter interactions are profitable because there is an extensive amount of dark matter present in the universe, and presumably, a lot of dark matter interactions and products of those interactions ; and many currently operational telescopes can be used to search for these products. Indirect searches help to constrain the annihilation cross section the lifetime of dark matter , as well as the annihilation rate.