Dan Shumow

Last updated

Dan Shumow is a cryptographer working at Microsoft Research.

At the CRYPTO 2007 conference rump session, Dan Shumow and Niels Ferguson presented an informal paper describing a kleptographic backdoor in the NIST specified Dual_EC_DRBG cryptographically secure pseudorandom number generator. [1] The backdoor was confirmed to be real in 2013 as part of the Edward Snowden leaks.

Dan Shumow co-authored an algorithm for detecting SHA-1 collisions with Marc Stevens, prior to the demonstration of a SHA-1 collision. [2]

Related Research Articles

Elliptic-curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of elliptic curves over finite fields. ECC allows smaller keys compared to non-EC cryptography to provide equivalent security.

In cryptography, SHA-1 is a hash function which takes an input and produces a 160-bit (20-byte) hash value known as a message digest – typically rendered as 40 hexadecimal digits. It was designed by the United States National Security Agency, and is a U.S. Federal Information Processing Standard. The algorithm has been cryptographically broken but is still widely used.

A cryptographically secure pseudorandom number generator (CSPRNG) or cryptographic pseudorandom number generator (CPRNG) is a pseudorandom number generator (PRNG) with properties that make it suitable for use in cryptography. It is also loosely known as a cryptographic random number generator (CRNG).

Niels T. Ferguson is a Dutch cryptographer and consultant who currently works for Microsoft. He has worked with others, including Bruce Schneier, designing cryptographic algorithms, testing algorithms and protocols, and writing papers and books. Among the designs Ferguson has contributed to is the AES finalist block cipher algorithm Twofish as well as the stream cipher Helix and the Skein hash function.

<span class="mw-page-title-main">RSA Security</span> American computer security company

RSA Security LLC, formerly RSA Security, Inc. and doing business as RSA, is an American computer and network security company with a focus on encryption and encryption standards. RSA was named after the initials of its co-founders, Ron Rivest, Adi Shamir and Leonard Adleman, after whom the RSA public key cryptography algorithm was also named. Among its products is the SecurID authentication token. The BSAFE cryptography libraries were also initially owned by RSA. RSA is known for incorporating backdoors developed by the NSA in its products. It also organizes the annual RSA Conference, an information security conference.

<span class="mw-page-title-main">Cryptographic hash function</span> Hash function that is suitable for use in cryptography

A cryptographic hash function (CHF) is a hash algorithm that has special properties desirable for a cryptographic application:

File verification is the process of using an algorithm for verifying the integrity of a computer file, usually by checksum. This can be done by comparing two files bit-by-bit, but requires two copies of the same file, and may miss systematic corruptions which might occur to both files. A more popular approach is to generate a hash of the copied file and comparing that to the hash of the original file.

The Secure Hash Algorithms are a family of cryptographic hash functions published by the National Institute of Standards and Technology (NIST) as a U.S. Federal Information Processing Standard (FIPS), including:

<span class="mw-page-title-main">Nothing-up-my-sleeve number</span> Numbers used by cryptographers to show that they are working in good faith

In cryptography, nothing-up-my-sleeve numbers are any numbers which, by their construction, are above suspicion of hidden properties. They are used in creating cryptographic functions such as hashes and ciphers. These algorithms often need randomized constants for mixing or initialization purposes. The cryptographer may wish to pick these values in a way that demonstrates the constants were not selected for a nefarious purpose, for example, to create a backdoor to the algorithm. These fears can be allayed by using numbers created in a way that leaves little room for adjustment. An example would be the use of initial digits from the number π as the constants. Using digits of π millions of places after the decimal point would not be considered trustworthy because the algorithm designer might have selected that starting point because it created a secret weakness the designer could later exploit.

The security of cryptographic systems depends on some secret data that is known to authorized persons but unknown and unpredictable to others. To achieve this unpredictability, some randomization is typically employed. Modern cryptographic protocols often require frequent generation of random quantities. Cryptographic attacks that subvert or exploit weaknesses in this process are known as random number generator attacks.

SHA-2 is a set of cryptographic hash functions designed by the United States National Security Agency (NSA) and first published in 2001. They are built using the Merkle–Damgård construction, from a one-way compression function itself built using the Davies–Meyer structure from a specialized block cipher.

Kleptography is the study of stealing information securely and subliminally. The term was introduced by Adam Young and Moti Yung in the Proceedings of Advances in Cryptology—Crypto '96. Kleptography is a subfield of cryptovirology and is a natural extension of the theory of subliminal channels that was pioneered by Gus Simmons while at Sandia National Laboratory. A kleptographic backdoor is synonymously referred to as an asymmetric backdoor. Kleptography encompasses secure and covert communications through cryptosystems and cryptographic protocols. This is reminiscent of, but not the same as steganography that studies covert communications through graphics, video, digital audio data, and so forth.

The Microsoft Windows platform specific Cryptographic Application Programming Interface is an application programming interface included with Microsoft Windows operating systems that provides services to enable developers to secure Windows-based applications using cryptography. It is a set of dynamically linked libraries that provides an abstraction layer which isolates programmers from the code used to encrypt the data. The Crypto API was first introduced in Windows NT 4.0 and enhanced in subsequent versions.

Cryptovirology refers to the use of cryptography to devise particularly powerful malware, such as ransomware and asymmetric backdoors. Traditionally, cryptography and its applications are defensive in nature, and provide privacy, authentication, and security to users. Cryptovirology employs a twist on cryptography, showing that it can also be used offensively. It can be used to mount extortion based attacks that cause loss of access to information, loss of confidentiality, and information leakage, tasks which cryptography typically prevents.

Dual_EC_DRBG is an algorithm that was presented as a cryptographically secure pseudorandom number generator (CSPRNG) using methods in elliptic curve cryptography. Despite wide public criticism, including the public identification of a backdoor, it was for seven years one of four CSPRNGs standardized in NIST SP 800-90A as originally published circa June 2006, until it was withdrawn in 2014.

<span class="mw-page-title-main">Skein (hash function)</span> Cryptographic hash function

Skein is a cryptographic hash function and one of five finalists in the NIST hash function competition. Entered as a candidate to become the SHA-3 standard, the successor of SHA-1 and SHA-2, it ultimately lost to NIST hash candidate Keccak.

The NIST hash function competition was an open competition held by the US National Institute of Standards and Technology (NIST) to develop a new hash function called SHA-3 to complement the older SHA-1 and SHA-2. The competition was formally announced in the Federal Register on November 2, 2007. "NIST is initiating an effort to develop one or more additional hash algorithms through a public competition, similar to the development process for the Advanced Encryption Standard (AES)." The competition ended on October 2, 2012 when NIST announced that Keccak would be the new SHA-3 hash algorithm.

NIST SP 800-90A is a publication by the National Institute of Standards and Technology with the title Recommendation for Random Number Generation Using Deterministic Random Bit Generators. The publication contains the specification for three allegedly cryptographically secure pseudorandom number generators for use in cryptography: Hash DRBG, HMAC DRBG, and CTR DRBG. Earlier versions included a fourth generator, Dual_EC_DRBG. Dual_EC_DRBG was later reported to probably contain a kleptographic backdoor inserted by the United States National Security Agency (NSA)

Dell BSAFE, formerly known as RSA BSAFE, is a FIPS 140-2 validated cryptography library, available in both C and Java. BSAFE was initially created by RSA Security, which was purchased by EMC and then, in turn, by Dell. When Dell sold the RSA business to Symphony Technology Group in 2020, Dell elected to retain the BSAFE product line. BSAFE was one of the most common encryption toolkits before the RSA patent expired in September 2000. It also contained implementations of the RCx ciphers, with the most common one being RC4. From 2004 to 2013 the default random number generator in the library was a NIST-approved RNG standard, widely known to be insecure from at least 2006, containing a kleptographic backdoor from the American National Security Agency (NSA), as part of its secret Bullrun program. In 2013 Reuters revealed that RSA had received a payment of $10 million to set the compromised algorithm as the default option. The RNG standard was subsequently withdrawn in 2014, and the RNG removed from BSAFE beginning in 2015.

In cryptography, security level is a measure of the strength that a cryptographic primitive — such as a cipher or hash function — achieves. Security level is usually expressed as a number of "bits of security", where n-bit security means that the attacker would have to perform 2n operations to break it, but other methods have been proposed that more closely model the costs for an attacker. This allows for convenient comparison between algorithms and is useful when combining multiple primitives in a hybrid cryptosystem, so there is no clear weakest link. For example, AES-128 is designed to offer a 128-bit security level, which is considered roughly equivalent to a RSA using 3072-bit key.

References

  1. Shumow, Dan; Ferguson, Niels. "On the Possibility of a Back Door in the NIST SP800-90 Dual Ec Prng" (PDF).
  2. "SHAttered". shattered.io.