Daylight redirecting film

Last updated
Prism tiles daylighting a room.jpg
Optimal daylighting of a room using prism lighting. The prism tile canopies mounted outside over the windows send light skimming across the ceiling, so that workers deeper in the room also have natural light coming over their left shoulders. Multiple prescriptions of prism tiles are used, so some light is also sent horizontally and slightly downwards. [1]
Daylight Redirecting Film.jpg
The reflection-based daylight redirecting film, stuck to the inside of top part of the windows, is reflecting light sharply up onto the ceiling. This is a suboptimal use of prism lighting. While the ceiling does diffuse the reflected light, it still mostly lights the area nearest the window, where it is superfluous. However, glare is reduced without reducing the amount of daylight in a room.
DRF 10pct.jpg
The same film in a similar room, but at another sun angle. The light is reflected at a shallower angle, lighting the room more evenly.

Daylight redirecting film (DRF) is a thin, flexible plastic film which can be applied to a window to refract or reflect incoming light upwards so that the deeper parts of the room are lit more evenly. It can be used as a substitute for opaque blinds. [2] It is a form of prism lighting.

Contents

Function

Before prism lighting.jpg
Uneven light from a window.
After prism lighting.jpg
The same light, redistributed by prism tiles in the window.

The human eye's response to light is non-linear: halving the light level does not halve the perceived brightness of a space, it makes it look only slightly dimmer. [3] [4] If light is redistributed from the brightest parts of a room to the dimmest, the room therefore appears brighter overall, and more space can be given a useful and comfortable level of illumination (see before and after images from an 1899 article, left). This can reduce the need for artificial lighting.

Refraction and total internal reflection inside optical prisms can bend beams of light. This bending of the light allows it to be redistributed. The prism structure only bends light appropriately at certain angles; if the angle of incoming light changes, a variety of prisms or a movable prism awning may be needed.

While the films do save energy from lighting, the savings vary substantially by climate, aspect, electricity costs, and existing lighting type. At 2014 costs, including labour, payback time may be measured in decades. [5]

Window films are also used for cooling and heating energy saving, and to block UV.

Manufacture

Daylight redirecting film is made of acrylic [5] on a flexible polyester backing, one side coated with a pressure-sensitive adhesive (to make it peel-and-stick). [2]

There are two types of film. Some film is moulded with tiny triangular prisms, making a flexible peel-and-stick miniature prismatic panel. The prisms are joined at the edges into a sheet. A prism sheet is somewhat like a linear Fresnel lens, but each ridge may be identical. Unlike a Fresnel lens, the light is not intended to be focused but used for anidolic lighting.

Another film is moulded with thin near-horizontal voids protruding into or through the acrylic; the slits reflect light hitting their top surfaces upwards. [6] [2] Refraction is minimized, to avoid colouring the light. [2]

The slit-based films are more transparent (both are translucent), but when the sun is high, they tend to send the light up at the ceiling, not deeper into the room. Prism-based films are translucent rather than transparent, but offer finer control over the direction of the outgoing light beam; the film can be made in a variety of prism shapes to refract light by a variety of angles. Prism-based films are a lighter modern version of glass prism tiles.

Daylight redirecting window film was initially made of one redirecting film and one glare-reducing diffusing film, often located on different interior surfaces of a double-glazed window, [2] but integrated single films are now available. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Optics</span> Branch of physics that studies light

Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Light is a type of electromagnetic radiation, and other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

<span class="mw-page-title-main">Refraction</span> Physical phenomenon relating to the direction of waves

In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commonly observed phenomenon, but other waves such as sound waves and water waves also experience refraction. How much a wave is refracted is determined by the change in wave speed and the initial direction of wave propagation relative to the direction of change in speed.

<span class="mw-page-title-main">Total internal reflection</span> Reflection of a wave from a boundary between two media (rather than refraction)

In physics, total internal reflection (TIR) is the phenomenon in which waves arriving at the interface (boundary) from one medium to another are not refracted into the second ("external") medium, but completely reflected back into the first ("internal") medium. It occurs when the second medium has a higher wave speed than the first, and the waves are incident at a sufficiently oblique angle on the interface. For example, the water-to-air surface in a typical fish tank, when viewed obliquely from below, reflects the underwater scene like a mirror with no loss of brightness (Fig. 1).

<span class="mw-page-title-main">Brewster's angle</span> Angle of incidence for which all reflected light will be polarized

Brewster's angle is an angle of incidence at which light with a particular polarization is perfectly transmitted through a transparent dielectric surface, with no reflection. When unpolarized light is incident at this angle, the light that is reflected from the surface is therefore perfectly polarized. This special angle of incidence is named after the Scottish physicist Sir David Brewster (1781–1868).

<span class="mw-page-title-main">Diffraction grating</span> Optical component which splits light into several beams

In optics, a diffraction grating is an optical grating with a periodic structure that diffracts light into several beams traveling in different directions. The emerging coloration is a form of structural coloration. The directions or diffraction angles of these beams depend on the wave (light) incident angle to the diffraction grating, the spacing or distance between adjacent diffracting elements on the grating, and the wavelength of the incident light. The grating acts as a dispersive element. Because of this, diffraction gratings are commonly used in monochromators and spectrometers, but other applications are also possible such as optical encoders for high-precision motion control and wavefront measurement.

<span class="mw-page-title-main">Fresnel lens</span> Compact composite lens

A Fresnel lens is a type of composite compact lens which reduces the amount of material required compared to a conventional lens by dividing the lens into a set of concentric annular sections.

<span class="mw-page-title-main">Daylighting (architecture)</span> Practice of placing openings and reflective surfaces so that sunlight can provide internal lighting

Daylighting is the practice of placing windows, skylights, other openings, and reflective surfaces so that direct or indirect sunlight can provide effective internal lighting. Particular attention is given to daylighting while designing a building when the aim is to maximize visual comfort or to reduce energy use. Energy savings can be achieved from the reduced use of artificial (electric) lighting or from passive solar heating. Artificial lighting energy use can be reduced by simply installing fewer electric lights where daylight is present or by automatically dimming or switching off electric lights in response to the presence of daylight – a process known as daylight harvesting.

<span class="mw-page-title-main">Poly(methyl methacrylate)</span> Transparent thermoplastic, commonly called acrylic

Poly(methyl methacrylate) (PMMA) is the synthetic polymer derived from methyl methacrylate. It is used as an engineering plastic, and it is a transparent thermoplastic. PMMA is also known as acrylic, acrylic glass, as well as by the trade names and brands Crylux, Hesalite, Plexiglas, Acrylite, Lucite, and Perspex, among several others. This plastic is often used in sheet form as a lightweight or shatter-resistant alternative to glass. It can also be used as a casting resin, in inks and coatings, and for many other purposes.

<span class="mw-page-title-main">Prism (optics)</span> Transparent optical element with flat, polished surfaces that refract light

An optical prism is a transparent optical element with flat, polished surfaces that are designed to refract light. At least one surface must be angled — elements with two parallel surfaces are not prisms. The most familiar type of optical prism is the triangular prism, which has a triangular base and rectangular sides. Not all optical prisms are geometric prisms, and not all geometric prisms would count as an optical prism. Prisms can be made from any material that is transparent to the wavelengths for which they are designed. Typical materials include glass, acrylic and fluorite.

Optics is the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behavior of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

<span class="mw-page-title-main">Optical coating</span> Material which alters light reflection or transmission on optics

An optical coating is one or more thin layers of material deposited on an optical component such as a lens, prism or mirror, which alters the way in which the optic reflects and transmits light. These coatings have become a key technology in the field of optics. One type of optical coating is an anti-reflective coating, which reduces unwanted reflections from surfaces, and is commonly used on spectacle and camera lenses. Another type is the high-reflector coating, which can be used to produce mirrors that reflect greater than 99.99% of the light that falls on them. More complex optical coatings exhibit high reflection over some range of wavelengths, and anti-reflection over another range, allowing the production of dichroic thin-film filters.

<span class="mw-page-title-main">Passive infrared sensor</span> Electronic sensor that measures infrared light

A passive infrared sensor is an electronic sensor that measures infrared (IR) light radiating from objects in its field of view. They are most often used in PIR-based motion detectors. PIR sensors are commonly used in security alarms and automatic lighting applications.

Nonimaging optics is the branch of optics concerned with the optimal transfer of light radiation between a source and a target. Unlike traditional imaging optics, the techniques involved do not attempt to form an image of the source; instead an optimized optical system for optimal radiative transfer from a source to a target is desired.

<span class="mw-page-title-main">Light tube</span> Architectural element

Light tubes are structures that transmit or distribute natural or artificial light for the purpose of illumination and are examples of optical waveguides.

<span class="mw-page-title-main">Fresnel rhomb</span> Optical prism

A Fresnel rhomb is an optical prism that introduces a 90° phase difference between two perpendicular components of polarization, by means of two total internal reflections. If the incident beam is linearly polarized at 45° to the plane of incidence and reflection, the emerging beam is circularly polarized, and vice versa. If the incident beam is linearly polarized at some other inclination, the emerging beam is elliptically polarized with one principal axis in the plane of reflection, and vice versa.

<span class="mw-page-title-main">Anidolic lighting</span> Indoor lighting

Anidolic lighting systems use anidolic optical components to light rooms. Light redirected by these systems does not converge to a focal point or form an image, hence the name.

<span class="mw-page-title-main">Skylight</span> Window in the ceiling-roof

A skylight is a light-permitting structure or window, usually made of transparent or translucent glass, that forms all or part of the roof space of a building for daylighting and ventilation purposes.

<span class="mw-page-title-main">Pavement light</span> Flat-topped skylights designed to be walked on

Pavement lights (UK), vault lights (US), floor lights, or sidewalk prisms are flat-topped walk-on skylights, usually set into pavement (sidewalks) or floors to let sunlight into the space below. They often use anidolic lighting prisms to throw the light sideways under the building. They were developed in the 19th century, but declined in popularity with the advent of cheap electric lighting in the early 20th. Older cities and smaller centers around the world have, or once had, pavement lights. In the early 21st century, such lights are approximately a century old, although lights are being installed in some new construction.

<span class="mw-page-title-main">Prism lighting</span> Use of prisms to improve lighting

Prism lighting is the use of prisms to improve the distribution of light in a space. It is usually used to distribute daylight, and is a form of anidolic lighting.

The Daily Racing Form is a tabloid newspaper founded in 1894 in Chicago, Illinois, by Frank Brunell.

References

  1. Henry Crew, Ph.D.; Olin H. Basquin, A.M., eds. (1898), "Pocket Hand-book of Electro-glazed Luxfer Prisms containing useful information and tables relating to their use For Architects, Engineers and Builders.", Glassian
  2. 1 2 3 4 5 Padiyath, Raghunath; 3M company, St Paul, Minnesota (2013), Daylight Redirecting Window Films, U.S.A. Department of Defense ESTCP Project number EW-201014, retrieved 2017-10-09{{citation}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  3. V. B. Bhatia (2001). Astronomy and astrophysics with elements of cosmology. CRC Press. p. 20. ISBN   978-0-8493-1013-3.
  4. Jianhong (Jackie) Shen; Yoon-Mo Jung (2006). "Weberized Mumford-Shah model with Bose-Einstein photon noise". Appl. Math. Optim. 53 (3): 331–358. CiteSeerX   10.1.1.129.1834 . doi:10.1007/s00245-005-0850-1. S2CID   18794171.
  5. 1 2 Daylight Redirecting Window Film Archived 2019-02-14 at the Wayback Machine , Energy Efficiency Emerging Technologies. E3tnw.org
  6. "SerraGlaze : Q&A" (PDF). Sweets.construction.com. Retrieved 13 February 2019.
  7. Object of the Moment: 3M Daylight Redirecting Film by 3M, by Selin Ashaboglu, March 02, 2017