Anidolic lighting

Last updated
Before prism lighting.jpg
Uneven light from a window.
After prism lighting.jpg
The same light, redistributed by prism tiles in the window.

Anidolic lighting systems use anidolic optical components to light rooms. Light redirected by these systems does not converge to a focal point or form an image, [1] hence the name (from an, without, and eidolon, image [2] ).

Contents

Anidolic lighting uses non-imaging mirrors, lenses, and light guides to capture exterior sunlight and direct it deeply into rooms, while also scattering rays to avoid glare. The human eye's response to light is non-linear, so a more even distribution of the same amount of light makes a room appear brighter.

It is most challenging to effectively capture and redistribute light on cloudy, overcast days, [2] when the sunlight is diffuse.

Optical elements

Mirrors are typically parabolic or elliptical mirrors. Lenses are frequently made in multiple sections, like a Fresnel lens. Light guides include light pipes and anidolic ceilings.

Lens systems

Lens systems use reflection and refraction within optical prisms to redirect daylight. Some forms of prism lighting have been used for centuries, and others are 21st-century.

Deck prisms were set into the upper decks of ships to light the decks below. Pavement lights were set into floors or sidewalks to let light into a basement below. The underside was frequently extended into prisms to direct and spread the light. [3]

Prism tiles were designed to bend sunbeams coming through a window upwards, so that they would reach deeper into a room. They were placed in the upper parts of window frames, where they were called "transom lights". [3]

Daylight redirecting window film (DRF) is a thin, flexible plastic version of the old glass prism tiles. It can be used as a substitute for opaque blinds. [4]

Mirror systems

Basic zenithal daylighting arrangement. An external parabolic or elliptical mirror captures zenithal daylight, and converges it, to let it pass through a narrow opening in the exterior wall. On the inside, two parabolic mirrors widen the beam to around 60deg. The floor area next to the conventional window is lit by the window. Zenithal anidolic example 1.jpg
Basic zenithal daylighting arrangement. An external parabolic or elliptical mirror captures zenithal daylight, and converges it, to let it pass through a narrow opening in the exterior wall. On the inside, two parabolic mirrors widen the beam to around 60°. The floor area next to the conventional window is lit by the window.

Anidolic mirror lighting systems can be divided into three parts:

Architectural design also require optimal integration into the building facade. [2]

Collection

Typically, light is captured with a compound parabolic collector (CPC) or elliptical collector (CEC) mounted on the exterior wall. These mirrors provide a wide and even collection pattern. The vertical capture angle approaches 90 degrees, from the horizon to the vertical plane of the supporting wall. An even capture pattern alleviates the need for a solar tracker: a permanently fixed anidolic collector remains effective at any time of day. [5]

External parabolic collectors require proper heat insulation (usually double-glazed windows over the zenithal opening) and roller blinds to reduce excessive lighting, glare and heat on sunny days. [2]

Snow and weatherproofing are also a consideration.

Transmission

A simple light tube, showing collection, transmission, and distribution Solatube 160 DS rafter cutaway.jpg
A simple light tube, showing collection, transmission, and distribution

Unlike the industrial parabolic troughs used in solar concentrators, architectural CPC mirrors do not concentrate captured light into a single focal point or focal line (which creates a fire hazard). Instead, light is directed into the building through a relatively wide opening.

Distribution

A second CPC or CEC mirror acting as an angle transformer [6] disperses this beam into a wide-angle, diffused pattern. If it transmits light from a wide external CPC, a light tube actually becomes a flat anidolic ceiling. [2]

Architectural integration

Integrated anidolic systems reduce external protrusion and attempt to visually blend into traditional facades. However, like other anidolic systems, they are susceptible to glare and offer no protection from overheating on sunny days. [7]

Example

For example, the external CPC in the reference lights a 6-metre deep room. It protrudes 0.67 metres from the exterior wall and employs a 3.6 metre long, 0.5 meter tall light tube, followed by a 0.9 metre long interior CPC, to deliver captured light into the back of the room. [2] This arrangement provided 32% energy savings over a six-month period compared to a reference facade. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Fresnel lens</span> Compact composite lens

A Fresnel lens is a type of composite compact lens which reduces the amount of material required compared to a conventional lens by dividing the lens into a set of concentric annular sections.

<span class="mw-page-title-main">Daylighting (architecture)</span> Practice of placing openings and reflective surfaces so that sunlight can provide internal lighting

Daylighting is the practice of placing windows, skylights, other openings, and reflective surfaces so that direct or indirect sunlight can provide effective internal lighting. Particular attention is given to daylighting while designing a building when the aim is to maximize visual comfort or to reduce energy use. Energy savings can be achieved from the reduced use of artificial (electric) lighting or from passive solar heating. Artificial lighting energy use can be reduced by simply installing fewer electric lights where daylight is present or by automatically dimming or switching off electric lights in response to the presence of daylight – a process known as daylight harvesting.

<span class="mw-page-title-main">Lighting</span> Deliberate use of light to achieve practical or aesthetic effects

Lighting or illumination is the deliberate use of light to achieve practical or aesthetic effects. Lighting includes the use of both artificial light sources like lamps and light fixtures, as well as natural illumination by capturing daylight. Daylighting is sometimes used as the main source of light during daytime in buildings. This can save energy in place of using artificial lighting, which represents a major component of energy consumption in buildings. Proper lighting can enhance task performance, improve the appearance of an area, or have positive psychological effects on occupants.

<span class="mw-page-title-main">Prism (optics)</span> Transparent optical element with flat, polished surfaces that refract light

An optical prism is a transparent optical element with flat, polished surfaces that are designed to refract light. At least one surface must be angled — elements with two parallel surfaces are not prisms. The most familiar type of optical prism is the triangular prism, which has a triangular base and rectangular sides. Not all optical prisms are geometric prisms, and not all geometric prisms would count as an optical prism. Prisms can be made from any material that is transparent to the wavelengths for which they are designed. Typical materials include glass, acrylic and fluorite.

<span class="mw-page-title-main">Architectural lighting design</span> Field within architecture, interior design and electrical engineering

Architectural lighting design is a field of work or study that is concerned with the design of lighting systems within the built environment, both interior and exterior. It can include manipulation and design of both daylight and electric light or both, to serve human needs.

<span class="mw-page-title-main">Passive infrared sensor</span> Electronic sensor that measures infrared light

A passive infrared sensor is an electronic sensor that measures infrared (IR) light radiating from objects in its field of view. They are most often used in PIR-based motion detectors. PIR sensors are commonly used in security alarms and automatic lighting applications.

Nonimaging optics is the branch of optics concerned with the optimal transfer of light radiation between a source and a target. Unlike traditional imaging optics, the techniques involved do not attempt to form an image of the source; instead an optimized optical system for optimal radiative transfer from a source to a target is desired.

<span class="mw-page-title-main">Intelligent lighting</span> Automated light fixtures

Intelligent lighting refers to lighting that has automated or mechanical abilities beyond those of traditional, stationary illumination. Although the most advanced intelligent lights can produce extraordinarily complex effects, the intelligence lies with the human lighting designer, control system programmer(For example, Chamsys and Avolites), or the lighting operator, rather than the fixture itself. For this reason, intelligent lighting (ILS) is also known as automated lighting, moving lights, moving heads, or simply movers.

<span class="mw-page-title-main">Stage lighting instrument</span> Device that emits light to illuminate performers

Stage lighting instruments are used in stage lighting to illuminate theatrical productions, concerts, and other performances taking place in live performance venues. They are also used to light television studios and sound stages.

<span class="mw-page-title-main">Portrait photography</span> Type of photography aimed at expressing the personality of the human subject(s)

Portrait photography, or portraiture, is a type of photography aimed toward capturing the personality of a person or group of people by using effective lighting, backdrops, and poses. A portrait photograph may be artistic or clinical. Frequently, portraits are commissioned for special occasions, such as weddings, school events, or commercial purposes. Portraits can serve many purposes, ranging from usage on a personal web site to display in the lobby of a business.

<span class="mw-page-title-main">Light tube</span> Architectural element

Light tubes are structures that transmit or distribute natural or artificial light for the purpose of illumination and are examples of optical waveguides.

<span class="mw-page-title-main">Glare (vision)</span> Bright light which impairs vision

Glare is difficulty of seeing in the presence of bright light such as direct or reflected sunlight or artificial light such as car headlamps at night. Because of this, some cars include mirrors with automatic anti-glare functions and in buildings, blinds or louvers are often used to protect occupants. Glare is caused by a significant ratio of luminance between the task and the glare source. Factors such as the angle between the task and the glare source and eye adaptation have significant impacts on the experience of glare.

Often task lighting refers to increasing illuminance to better accomplish a specific activity. However, the illuminance level is not the only factor governing visibility. Contrast is also important, and a poorly positioned light source may cause contrast reduction, resulting in loss of visibility. The most important purpose of task lighting in the office is not increasing illuminance, but improving contrast. General lighting can be reduced because task lighting provides focused light where needed.

<span class="mw-page-title-main">Reflector (photography)</span> Reflective surface used to redirect light towards a given subject or scene, used in photography

In photography and cinematography, a reflector is an improvised or specialised reflective surface used to redirect light towards a given subject or scene.

<span class="mw-page-title-main">Deck prism</span> Way of transmitting light from the sun to the inside of a boat

A deck prism, or bullseye, is a prism inserted into the deck of a ship to provide light down below.

<span class="mw-page-title-main">Skylight</span> Window in the ceiling-roof

A skylight is a light-permitting structure or window, usually made of transparent or translucent glass, that forms all or part of the roof space of a building for daylighting and ventilation purposes.

Photopia Optical Design Software (Photopia) is a commercial optical engineering ray-tracing software program for the design and analysis of non-imaging optical systems. Photopia is written and distributed by LTI Optics, LLC and was first released in 1996. Photopia's main market is the architectural lighting industry but it is also used in the automotive, medical, industrial, signal and consumer products industries. Photopia includes a full library of lamps including the latest high brightness LEDs as well as a library of material BSDF data.

<span class="mw-page-title-main">Pavement light</span> Flat-topped skylights designed to be walked on

Pavement lights (UK), vault lights (US), floor lights, or sidewalk prisms are flat-topped walk-on skylights, usually set into pavement (sidewalks) or floors to let sunlight into the space below. They often use anidolic lighting prisms to throw the light sideways under the building. They were developed in the 19th century, but declined in popularity with the advent of cheap electric lighting in the early 20th. Older cities and smaller centers around the world have, or once had, pavement lights. In the early 21st century, such lights are approximately a century old, although lights are being installed in some new construction.

<span class="mw-page-title-main">Prism lighting</span> Use of prisms to improve lighting

Prism lighting is the use of prisms to improve the distribution of light in a space. It is usually used to distribute daylight, and is a form of anidolic lighting.

<span class="mw-page-title-main">Daylight redirecting film</span> Plastic applied to window to reflect light

Daylight redirecting film (DRF) is a thin, flexible plastic film which can be applied to a window to refract or reflect incoming light upwards so that the deeper parts of the room are lit more evenly. It can be used as a substitute for opaque blinds. It is a form of prism lighting.

References

  1. Chaves, p. 72
  2. 1 2 3 4 5 6 7 Scartezzini, p. 14
  3. 1 2 Macky, Ian, "Prism glass", Glassian
  4. Padiyath, Raghunath; 3M company (2013), Daylight Redirecting Window Films, U.S.A. Department of Defense ESTCP Project number EW-201014, retrieved 2017-10-09{{citation}}: CS1 maint: numeric names: authors list (link)
  5. Chaves, p. 146
  6. See Chaves, pp.75, for a discussion on angle transformer properties.
  7. Scartezzini, p. 15

Sources