Deformation (volcanology)

Last updated
Summit inflation at Mauna Loa, as indicated by GPS measurements between June 2004 and April 2005. Mauna Loa Summit Inflation.jpg
Summit inflation at Mauna Loa, as indicated by GPS measurements between June 2004 and April 2005.
A cryptodome developed on the north side of Mount St. Helens prior to its 1980 eruption as magma pushed up within the peak. MSH80 bulge on north side 04-27-80.jpg
A cryptodome developed on the north side of Mount St. Helens prior to its 1980 eruption as magma pushed up within the peak.

In volcanology, deformation is any change in the shape of a volcano or the land surrounding it. This can be in the form of inflation, which is a response to pressurization, or deflation, which is a response to depressurization. Inflation is represented by swelling of the ground surface, a volcanic edifice, or a subsurface magma body. It can be caused by magma accumulation, exsolution of volatiles, geothermal processes, heating, and tectonic compression. Deflation is represented by shrinking of the ground surface, a volcanic edifice, or a subsurface magma body. It can be caused by magma withdrawal (related to intrusion or eruption), volatile escape, thermal contraction, phase changes during crystallization, and tectonic extension. [1] Deformation is a key indicator of pre-eruptive unrest at many active volcanoes. [2] The term bradyseism is used in the volcanological literature to mean the vertical ground movements associated with the Phlegraean Fields volcanic area west of Naples, Italy. [3]

Ground deformation measurements are crucial in volcano monitoring as they provide an important indicator about what is happening beneath a volcano. As magma accumulates in an underground reservoir before an eruption, the ground surface typically undergoes inflation. [4] If silicic magma intrudes very near the surface but does not breach to the surface, it may form a bulge on the surface known as a cryptodome. [5] Although deformation is frequently related to subsurface magmatic movements, other processes may contribute as well. This is particularly true for subglacial volcanoes, which may undergo inflation or deflation due to size variations of the overlying ice cap. An example of this phenomenon has been demonstrated for Katla, an active volcano under Mýrdalsjökull in the south of Iceland. [6]

GPS, tilt and InSAR are the primary methods used to track ground movement. GPS measurements can be used to estimate the location and amount of magma accumulating beneath the surface. For example, the Hawaiian volcano Mauna Loa has experienced multiple episodes of inflation since its 1984 eruption, and it has been well documented since the mid-1990s. Ground tilt is continuously recorded with electronic tiltmeters installed in drill holes about 4 m (13 ft) beneath the ground surface—a location that insulates the instruments from the effects of environmental (temperature and wind) and cultural noise. Rapid changes in tilt are usually detected in the hours to days before an intrusion or eruption. InSAR uses radar images of the ground that are collected by airplanes or orbiting satellites to make maps of ground deformation. The Group on Earth Observations' "Supersite" initiative identified Hawaii as a critical site for regular monitoring, so more satellite InSAR data are available for Kīlauea and Mauna Loa volcanoes than for any other volcano on Earth[citation needed]. Because InSAR detects deformation over broad areas, it is an excellent tool for mapping both large- and small-scale changes. [4]

Related Research Articles

<span class="mw-page-title-main">Volcano</span> Rupture in the crust of a planet that allows lava, ash, and gases to escape from below the surface

A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface.

<span class="mw-page-title-main">Mauna Loa</span> Volcano in Hawaii, United States

Mauna Loa is one of five volcanoes that form the Island of Hawaii in the U.S. state of Hawaii in the Pacific Ocean. The largest subaerial volcano in both mass and volume, Mauna Loa has historically been considered the largest volcano on Earth, dwarfed only by Tamu Massif. It is an active shield volcano with relatively gentle slopes, with a volume estimated at 18,000 cubic miles (75,000 km3), although its peak is about 125 feet (38 m) lower than that of its neighbor, Mauna Kea. Lava eruptions from Mauna Loa are silica-poor and very fluid, and tend to be non-explosive.

<span class="mw-page-title-main">Volcanology</span> Study of volcanoes, lava, magma and associated phenomena

Volcanology is the study of volcanoes, lava, magma and related geological, geophysical and geochemical phenomena (volcanism). The term volcanology is derived from the Latin word vulcan. Vulcan was the ancient Roman god of fire.

<span class="mw-page-title-main">Shield volcano</span> Low-profile volcano usually formed almost entirely of fluid lava flows

A shield volcano is a type of volcano named for its low profile, resembling a warrior's shield lying on the ground. It is formed by the eruption of highly fluid lava, which travels farther and forms thinner flows than the more viscous lava erupted from a stratovolcano. Repeated eruptions result in the steady accumulation of broad sheets of lava, building up the shield volcano's distinctive form.

<span class="mw-page-title-main">Bradyseism</span> Motion of Earths surface caused by volcanic activity

Bradyseism is the gradual uplift or descent of part of the Earth's surface caused by the filling or emptying of an underground magma chamber or hydrothermal activity, particularly in volcanic calderas. It can persist for millennia in between eruptions and each uplift event is normally accompanied by thousands of small to moderate earthquakes. The word derives from the ancient Greek words βραδύςbradús, meaning "slow", and σεισμόςseismós meaning "movement", and was coined by Arturo Issel in 1883.

<span class="mw-page-title-main">Katla (volcano)</span> Large volcano on Southern Iceland

Katla is an active volcano in southern Iceland. This particular volcano has been very active historically with at least twenty documented major eruptions since 2920 BCE. In its recent history though, Katla has been less active as the last major eruption occurred in 1918. These eruptions have had a Volcanic Explosivity Index (VEI) of between 4 and 5 on a scale of 0 to 8. In comparison, the Eyjafjallajökull 2010 eruption had a VEI of 4. Larger VEI-5 eruptions are comparable to Mount St. Helens 1980 eruption. Several smaller (minor) eruptions measuring VEI-1 and below have occurred since, with the most recent being in 1999.

A volcano tectonic earthquake or volcano earthquake is caused by the movement of magma beneath the surface of the Earth. The movement results in pressure changes where the rock around the magma has experienced stress. At some point, this stress can cause the rock to break or move. This seismic activity is used by scientists to monitor volcanoes. The earthquakes may also be related to dike intrusion or occur as earthquake swarms.

<span class="mw-page-title-main">Cordón del Azufre</span> Mountain in Argentina

Cordón del Azufre is a small, inactive complex volcano located in the Central Andes, at the border of Argentina and Chile.

<span class="mw-page-title-main">Tiltmeter</span> Inclinometer for measuring small tilts

A tiltmeter is a sensitive inclinometer designed to measure very small changes from the vertical level, either on the ground or in structures. Tiltmeters are used extensively for monitoring volcanoes, the response of dams to filling, the small movements of potential landslides, the orientation and volume of hydraulic fractures, and the response of structures to various influences such as loading and foundation settlement. Tiltmeters may be purely mechanical or incorporate vibrating-wire or electrolytic sensors for electronic measurement. A sensitive instrument can detect changes of as little as one arc second.

<span class="mw-page-title-main">Aira Caldera</span> Large flooded coastal volcanic caldera in Japan

Aira Caldera is a gigantic volcanic caldera that is located on the southern end of Kyushu, Japan. It is believed to have been formed about 30,000 years ago with a succession of pyroclastic surges. It is currently the place of residence to over 900,000 people. The shores of Aira Caldera are home to rare flora and fauna, including Japanese bay tree and Japanese black pine. The caldera is home to Mount Sakurajima, and the Mount Kirishima group of stratovolcanoes lies to the north of the caldera. The most famous and active of this group is Shinmoedake.

<span class="mw-page-title-main">Volcanic gas</span> Gases given off by active volcanoes

Volcanic gases are gases given off by active volcanoes. These include gases trapped in cavities (vesicles) in volcanic rocks, dissolved or dissociated gases in magma and lava, or gases emanating from lava, from volcanic craters or vents. Volcanic gases can also be emitted through groundwater heated by volcanic action.

<span class="mw-page-title-main">Prediction of volcanic activity</span> Research to predict volcanic activity

Prediction of volcanic activity, or volcanic eruption forecasting, is an interdisciplinary monitoring and research effort to predict the time and severity of a volcano's eruption. Of particular importance is the prediction of hazardous eruptions that could lead to catastrophic loss of life, property, and disruption of human activities.

<span class="mw-page-title-main">Rift zone</span> Part of a volcano where a set of linear cracks form

A rift zone is a feature of some volcanoes, especially shield volcanoes, in which a set of linear cracks develops in a volcanic edifice, typically forming into two or three well-defined regions along the flanks of the vent. Believed to be primarily caused by internal and gravitational stresses generated by magma emplacement within and across various regions of the volcano, rift zones allow the intrusion of magmatic dykes into the slopes of the volcano itself. The addition of these magmatic materials usually contributes to the further rifting of the slope, in addition to generating fissure eruptions from those dykes that reach the surface. It is the grouping of these fissures, and the dykes that feed them, that serves to delineate where and whether a rift zone is to be defined. The accumulated lava of repeated eruptions from rift zones along with the endogenous growth created by magma intrusions causes these volcanoes to have an elongated shape. Perhaps the best example of this is Mauna Loa, which in Hawaiian means "long mountain", and which features two very well defined rift zones extending tens of kilometers outward from the central vent.

<span class="mw-page-title-main">Types of volcanic eruptions</span> Overview of different types of volcanic eruptions

Several types of volcanic eruptions—during which lava, tephra, and assorted gases are expelled from a volcanic vent or fissure—have been distinguished by volcanologists. These are often named after famous volcanoes where that type of behavior has been observed. Some volcanoes may exhibit only one characteristic type of eruption during a period of activity, while others may display an entire sequence of types all in one eruptive series.

<span class="mw-page-title-main">2011–12 El Hierro eruption</span> Submarine volcanic eruption near the Canary Islands

The 2011–2012 El Hierro eruption occurred just off the island of El Hierro, the smallest and farthest south and west of the Canary Islands, in the Atlantic Ocean off the coast of Africa. The island is also the youngest in the volcanic chain. The October 2011 – March 2012 eruption was underwater, with a fissure of vents located approximately 2 kilometres to the south of the fishing village of La Restinga on the southern coast of the island. Increased seismicity in June 2012 to the north-west of the vent did not result in another phase of eruptive activity. Until the 2021 La Palma eruption, which started on 19 September 2021, this was the last volcanic eruption in Spain.

Volcano tectonics is a scientific field that uses the techniques and methods of structural geology, tectonics, and physics to analyse and interpret physical processes and the associated deformation in volcanic areas, at any scale.

Irruputuncu is a volcano in the commune of Pica, Tamarugal Province, Tarapacá Region, Chile, as well as San Pedro de Quemes Municipality, Nor Lípez Province, Potosí Department, Bolivia. The mountain's summit is 5,163 m (16,939 ft) high and has two summit craters—the southernmost 200 m (660 ft)-wide one has active fumaroles. The volcano also features lava flows, block and ash flows and several lava domes. The volcano is part of the Andean Central Volcanic Zone (CVZ).

<span class="mw-page-title-main">1996 eruption of Gjálp</span>

Gjálp is a hyaloclastite ridge (tindar) in Iceland under the Vatnajökull glacier shield. It originated in an eruption series in 1996 and is probably part of the Grímsvötn volcanic system, though not all the scientists involved are of this opinion.

<span class="mw-page-title-main">Ice cauldron</span>

Ice cauldrons are ice formations within glaciers that cover some subglacial volcanoes. They can have circular to oblong forms. Their surface areas reach from some meters to up to 1 or more kilometers.

Lazufre is a Quaternary volcanic dome in the central Andes, on the border between Chile and Argentina. It is part of the Central Volcanic Zone (CVZ), one of the four distinct volcanic belts of South America. The CVZ includes a number of calderas and supervolcanoes that have emplaced ignimbrites in the region.

References

  1. Dzurisin, Daniel (2019). Volcano Deformation: Insights into Magmatic Systems. Springer Science+Business Media. pp. 372, 379. ISBN   978-3-642-27737-5.
  2. Garthwaite, Matthew C.; Miller, Victoria L.; Saunders, Steve; Parks, Michelle M.; Hu, Guorong; Parker, Amy L. (2019). "A Simplified Approach to Operational InSAR Monitoring of Volcano Deformation in Low- and Middle-Income Countries: Case Study of Rabaul Caldera, Papua New Guinea". Frontiers in Earth Science . Higher Education Press. 6 (240): 1. Bibcode:2018FrEaS...6..240G. doi: 10.3389/feart.2018.00240 . ISSN   2095-0195.
  3. "Bradyseism in the Flegrea Area". United Nations Educational, Scientific and Cultural Organization . Retrieved 2021-04-30.
  4. 1 2 "Deformation Monitoring Tracks Moving Magma and Faults". United States Geological Survey . Retrieved 2021-04-28.PD-icon.svg This article incorporates public domain material from websites or documents of the United States Geological Survey .
  5. Goto, Yoshihiko; Tomiya, Akihiko (2019). "Internal Structures and Growth Style of a Quaternary Subaerial Rhyodacite Cryptodome at Ogariyama, Usu Volcano, Hokkaido, Japan". Frontiers in Earth Science . Higher Education Press. 7 (66): 1. Bibcode:2019FrEaS...7...66G. doi: 10.3389/feart.2019.00066 . ISSN   2095-0195.
  6. Pinel, V.; Sigmundsson, F.; Sturkell, E.; Geirsson, H.; Einarsson, P.; Gudmundsson, M. T.; Högnadóttir, T. (2007). "Discriminating volcano deformation due to magma movements and variable surface loads: application to Katla subglacial volcano, Iceland". Geophysical Journal International . Oxford University Press. 169 (1): 325. Bibcode:2007GeoJI.169..325P. doi: 10.1111/j.1365-246X.2006.03267.x . ISSN   0956-540X. S2CID   131370499.