Dependency network (graphical model)

Last updated

Dependency networks (DNs) are graphical models, similar to Markov networks, wherein each vertex (node) corresponds to a random variable and each edge captures dependencies among variables. Unlike Bayesian networks, DNs may contain cycles. Each node is associated to a conditional probability table, which determines the realization of the random variable given its parents. [1]

Contents

Markov blanket

In a Bayesian network, the Markov blanket of a node is the set of parents and children of that node, together with the children's parents. The values of the parents and children of a node evidently give information about that node. However, its children's parents also have to be included in the Markov blanket, because they can be used to explain away the node in question. In a Markov random field, the Markov blanket for a node is simply its adjacent (or neighboring) nodes. In a dependency network, the Markov blanket for a node is simply the set of its parents.

Dependency network versus Bayesian networks

Dependency networks have advantages and disadvantages with respect to Bayesian networks. In particular, they are easier to parameterize from data, as there are efficient algorithms for learning both the structure and probabilities of a dependency network from data. Such algorithms are not available for Bayesian networks, for which the problem of determining the optimal structure is NP-hard. [2] Nonetheless, a dependency network may be more difficult to construct using a knowledge-based approach driven by expert-knowledge.

Dependency networks versus Markov networks

Consistent dependency networks and Markov networks have the same representational power. Nonetheless, it is possible to construct non-consistent dependency networks, i.e., dependency networks for which there is no compatible valid joint probability distribution. Markov networks, in contrast, are always consistent.

Definition

A consistent dependency network for a set of random variables with joint distribution is a pair where is a cyclic directed graph, where each of its nodes corresponds to a variable in , and is a set of conditional probability distributions. The parents of node , denoted , correspond to those variables that satisfy the following independence relationships

The dependency network is consistent in the sense that each local distribution can be obtained from the joint distribution . Dependency networks learned using large data sets with large sample sizes will almost always be consistent. A non-consistent network is a network for which there is no joint probability distribution compatible with the pair . In that case, there is no joint probability distribution that satisfies the independence relationships subsumed by that pair.

Structure and parameters learning

Two important tasks in a dependency network are to learn its structure and probabilities from data. Essentially, the learning algorithm consists of independently performing a probabilistic regression or classification for each variable in the domain. It comes from observation that the local distribution for variable in a dependency network is the conditional distribution , which can be estimated by any number of classification or regression techniques, such as methods using a probabilistic decision tree, a neural network or a probabilistic support-vector machine. Hence, for each variable in domain , we independently estimate its local distribution from data using a classification algorithm, even though it is a distinct method for each variable. Here, we will briefly show how probabilistic decision trees are used to estimate the local distributions. For each variable in , a probabilistic decision tree is learned where is the target variable and are the input variables. To learn a decision tree structure for , the search algorithm begins with a singleton root node without children. Then, each leaf node in the tree is replaced with a binary split on some variable in , until no more replacements increase the score of the tree.

Probabilistic Inference

A probabilistic inference is the task in which we wish to answer probabilistic queries of the form , given a graphical model for , where (the 'target' variables) (the 'input' variables) are disjoint subsets of . One of the alternatives for performing probabilistic inference is using Gibbs sampling. A naive approach for this uses an ordered Gibbs sampler, an important difficulty of which is that if either or is small, then many iterations are required for an accurate probability estimate. Another approach for estimating when is small is to use modified ordered Gibbs sampler, where is fixed during Gibbs sampling.

It may also happen that is rare, e.g. when has many variables. So, the law of total probability along with the independencies encoded in a dependency network can be used to decompose the inference task into a set of inference tasks on single variables. This approach comes with the advantage that some terms may be obtained by direct lookup, thereby avoiding some Gibbs sampling.

You can see below an algorithm that can be used for obtain for a particular instance of and , where and are disjoint subsets.

  1. (* the unprocessed variables *)
  2. (* the processed and conditioning variables *)
  3. (* the values for *)
  4. While :
    1. Choose such that has no more parents in than any variable in
    2. If all the parents of are in
    3. Else
      1. Use a modified ordered Gibbs sampler to determine
  5. Returns the product of the conditionals

Applications

In addition to the applications to probabilistic inference, the following applications are in the category of Collaborative Filtering (CF), which is the task of predicting preferences. Dependency networks are a natural model class on which to base CF predictions, once an algorithm for this task only needs estimation of to produce recommendations. In particular, these estimates may be obtained by a direct lookup in a dependency network.

Another class of useful applications for dependency networks is related to data visualization, that is, visualization of predictive relationships.

See also

Related Research Articles

Bayesian inference is a method of statistical inference in which Bayes' theorem is used to update the probability for a hypothesis as more evidence or information becomes available. Fundamentally, Bayesian inference uses prior knowledge, in the form of a prior distribution in order to estimate posterior probabilities. Bayesian inference is an important technique in statistics, and especially in mathematical statistics. Bayesian updating is particularly important in the dynamic analysis of a sequence of data. Bayesian inference has found application in a wide range of activities, including science, engineering, philosophy, medicine, sport, and law. In the philosophy of decision theory, Bayesian inference is closely related to subjective probability, often called "Bayesian probability".

<span class="mw-page-title-main">Naive Bayes classifier</span> Probabilistic classification algorithm

In statistics, naive Bayes classifiers are a family of linear "probabilistic classifiers" which assumes that the features are conditionally independent, given the target class. The strength (naivety) of this assumption is what gives the classifier its name. These classifiers are among the simplest Bayesian network models.

A hidden Markov model (HMM) is a Markov model in which the observations are dependent on a latent Markov process. An HMM requires that there be an observable process whose outcomes depend on the outcomes of in a known way. Since cannot be observed directly, the goal is to learn about state of by observing By definition of being a Markov model, an HMM has an additional requirement that the outcome of at time must be "influenced" exclusively by the outcome of at and that the outcomes of and at must be conditionally independent of at given at time Estimation of the parameters in an HMM can be performed using maximum likelihood. For linear chain HMMs, the Baum–Welch algorithm can be used to estimate the parameters.

A Bayesian network is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). While it is one of several forms of causal notation, causal networks are special cases of Bayesian networks. Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases.

A graphical model or probabilistic graphical model (PGM) or structured probabilistic model is a probabilistic model for which a graph expresses the conditional dependence structure between random variables. They are commonly used in probability theory, statistics—particularly Bayesian statistics—and machine learning.

In statistics, Gibbs sampling or a Gibbs sampler is a Markov chain Monte Carlo (MCMC) algorithm for sampling from a specified multivariate probability distribution when direct sampling from the joint distribution is difficult, but sampling from the conditional distribution is more practical. This sequence can be used to approximate the joint distribution ; to approximate the marginal distribution of one of the variables, or some subset of the variables ; or to compute an integral. Typically, some of the variables correspond to observations whose values are known, and hence do not need to be sampled.

Belief propagation, also known as sum–product message passing, is a message-passing algorithm for performing inference on graphical models, such as Bayesian networks and Markov random fields. It calculates the marginal distribution for each unobserved node, conditional on any observed nodes. Belief propagation is commonly used in artificial intelligence and information theory, and has demonstrated empirical success in numerous applications, including low-density parity-check codes, turbo codes, free energy approximation, and satisfiability.

<span class="mw-page-title-main">Markov blanket</span> Subset of variables that contains all the useful information

In statistics and machine learning, when one wants to infer a random variable with a set of variables, usually a subset is enough, and other variables are useless. Such a subset that contains all the useful information is called a Markov blanket. If a Markov blanket is minimal, meaning that it cannot drop any variable without losing information, it is called a Markov boundary. Identifying a Markov blanket or a Markov boundary helps to extract useful features. The terms of Markov blanket and Markov boundary were coined by Judea Pearl in 1988. A Markov blanket can be constituted by a set of Markov chains.

<span class="mw-page-title-main">Markov random field</span> Set of random variables

In the domain of physics and probability, a Markov random field (MRF), Markov network or undirected graphical model is a set of random variables having a Markov property described by an undirected graph. In other words, a random field is said to be a Markov random field if it satisfies Markov properties. The concept originates from the Sherrington–Kirkpatrick model.

A Markov logic network (MLN) is a probabilistic logic which applies the ideas of a Markov network to first-order logic, defining probability distributions on possible worlds on any given domain.

<span class="mw-page-title-main">Scoring rule</span> Measure for evaluating probabilistic forecasts

In decision theory, a scoring rule provides evaluation metrics for probabilistic predictions or forecasts. While "regular" loss functions assign a goodness-of-fit score to a predicted value and an observed value, scoring rules assign such a score to a predicted probability distribution and an observed value. On the other hand, a scoring function provides a summary measure for the evaluation of point predictions, i.e. one predicts a property or functional , like the expectation or the median.

Conditional random fields (CRFs) are a class of statistical modeling methods often applied in pattern recognition and machine learning and used for structured prediction. Whereas a classifier predicts a label for a single sample without considering "neighbouring" samples, a CRF can take context into account. To do so, the predictions are modelled as a graphical model, which represents the presence of dependencies between the predictions. What kind of graph is used depends on the application. For example, in natural language processing, "linear chain" CRFs are popular, for which each prediction is dependent only on its immediate neighbours. In image processing, the graph typically connects locations to nearby and/or similar locations to enforce that they receive similar predictions.

In statistics, an exchangeable sequence of random variables is a sequence X1X2X3, ... whose joint probability distribution does not change when the positions in the sequence in which finitely many of them appear are altered. In other words, the joint distribution is invariant to finite permutation. Thus, for example the sequences

In probability theory and statistics, a categorical distribution is a discrete probability distribution that describes the possible results of a random variable that can take on one of K possible categories, with the probability of each category separately specified. There is no innate underlying ordering of these outcomes, but numerical labels are often attached for convenience in describing the distribution,. The K-dimensional categorical distribution is the most general distribution over a K-way event; any other discrete distribution over a size-K sample space is a special case. The parameters specifying the probabilities of each possible outcome are constrained only by the fact that each must be in the range 0 to 1, and all must sum to 1.

<span class="mw-page-title-main">Chow–Liu tree</span>

In probability theory and statistics Chow–Liu tree is an efficient method for constructing a second-order product approximation of a joint probability distribution, first described in a paper by Chow & Liu (1968). The goals of such a decomposition, as with such Bayesian networks in general, may be either data compression or inference.

<span class="mw-page-title-main">Hamiltonian Monte Carlo</span> Sampling algorithm

The Hamiltonian Monte Carlo algorithm is a Markov chain Monte Carlo method for obtaining a sequence of random samples which converge to being distributed according to a target probability distribution for which direct sampling is difficult. This sequence can be used to estimate integrals with respect to the target distribution.

Variable elimination (VE) is a simple and general exact inference algorithm in probabilistic graphical models, such as Bayesian networks and Markov random fields. It can be used for inference of maximum a posteriori (MAP) state or estimation of conditional or marginal distributions over a subset of variables. The algorithm has exponential time complexity, but could be efficient in practice for low-treewidth graphs, if the proper elimination order is used.

Stochastic chains with memory of variable length are a family of stochastic chains of finite order in a finite alphabet, such as, for every time pass, only one finite suffix of the past, called context, is necessary to predict the next symbol. These models were introduced in the information theory literature by Jorma Rissanen in 1983, as a universal tool to data compression, but recently have been used to model data in different areas such as biology, linguistics and music.

In network theory, collective classification is the simultaneous prediction of the labels for multiple objects, where each label is predicted using information about the object's observed features, the observed features and labels of its neighbors, and the unobserved labels of its neighbors. Collective classification problems are defined in terms of networks of random variables, where the network structure determines the relationship between the random variables. Inference is performed on multiple random variables simultaneously, typically by propagating information between nodes in the network to perform approximate inference. Approaches that use collective classification can make use of relational information when performing inference. Examples of collective classification include predicting attributes of individuals in a social network, classifying webpages in the World Wide Web, and inferring the research area of a paper in a scientific publication dataset.

Probabilistic numerics is an active field of study at the intersection of applied mathematics, statistics, and machine learning centering on the concept of uncertainty in computation. In probabilistic numerics, tasks in numerical analysis such as finding numerical solutions for integration, linear algebra, optimization and simulation and differential equations are seen as problems of statistical, probabilistic, or Bayesian inference.

References

  1. HECKERMAN, David; MAXWELL C., David; MEEK, Christopher; ROUNTHWAITE, Robert; KADIE, Carl (October 2000). "Dependency Networks for Inference, Collaborative Filtering, and Data Visualization" (PDF). Journal of Machine Learning Research.
  2. HECKERMAN, David (2012). "Large-Sample Learning of Bayesian Networks is NP-Hard" (PDF). arXiv: 1212.2468 .{{cite journal}}: Cite journal requires |journal= (help)