Descendant tree (group theory)

Last updated

In mathematics, specifically group theory, a descendant tree is a hierarchical structure that visualizes parent-descendant relations between isomorphism classes of finite groups of prime power order , for a fixed prime number and varying integer exponents . Such groups are briefly called finite p-groups. The vertices of a descendant tree are isomorphism classes of finite p-groups.

Contents

Additionally to their order, finite p-groups have two further related invariants, the nilpotency class and the coclass. It turned out that descendant trees of a particular kind, the so-called pruned coclass trees whose infinitely many vertices share a common coclass , reveal a repeating finite pattern. These two crucial properties of finiteness and periodicity admit a characterization of all members of the tree by finitely many parametrized presentations. Consequently, descendant trees play a fundamental role in the classification of finite p-groups. By means of kernels and targets of Artin transfer homomorphisms, descendant trees can be endowed with additional structure.

An important question is how the descendant tree can actually be constructed for an assigned starting group which is taken as the root of the tree. The p-group generation algorithm is a recursive process for constructing the descendant tree of a given finite p-group playing the role of the tree root. This algorithm is implemented in the computational algebra systems GAP and Magma.

Definitions and terminology

According to M. F. Newman, [1] there exist several distinct definitions of the parent of a finite p-group . The common principle is to form the quotient of by a suitable normal subgroup which can be either

P

  1. the centre of , whence is called the central quotient of , or
  2. the last non-trivial term of the lower central series of , where denotes the nilpotency class of , or
  3. the last non-trivial term of the lower exponent-p central series of , where denotes the exponent-p class of , or
  4. the last non-trivial term of the derived series of , where denotes the derived length of .

In each case, is called an immediate descendant of and a directed edge of the tree is defined either by in the direction of the canonical projection onto the quotient or by in the opposite direction, which is more usual for descendant trees. The former convention is adopted by C. R. Leedham-Green and M. F. Newman, [2] by M. du Sautoy and D. Segal, [3] by C. R. Leedham-Green and S. McKay, [4] and by B. Eick, C. R. Leedham-Green, M. F. Newman and E. A. O'Brien. [5] The latter definition is used by M. F. Newman, [1] by M. F. Newman and E. A. O'Brien, [6] by M. du Sautoy, [7] and by B. Eick and C. R. Leedham-Green. [8]

In the following, the direction of the canonical projections is selected for all edges. Then, more generally, a vertex is a descendant of a vertex , and is an ancestor of , if either is equal to or there is a path

, with ,

of directed edges from to . The vertices forming the path necessarily coincide with the iterated parents of , with :

, with ,

In the most important special case (P2) of parents defined as last non-trivial lower central quotients, they can also be viewed as the successive quotientsof class of when the nilpotency class of is given by :

, with .

Generally, the descendant tree of a vertex is the subtree of all descendants of , starting at the root. The maximal possible descendant tree of the trivial group contains all finite p-groups and is somewhat exceptional, since, for any parent definition (P1–P4), the trivial group has infinitely many abelian p-groups as its immediate descendants. The parent definitions (P2–P3) have the advantage that any non-trivial finite p-group (of order divisible by ) possesses only finitely many immediate descendants.

Pro-p groups and coclass trees

For a sound understanding of coclass trees as a particular instance of descendant trees, it is necessary to summarize some facts concerning infinite topological pro-p groups. The members , with , of the lower central series of a pro-p group are closed (and open) subgroups of finite index, and therefore the corresponding quotients are finite p-groups. The pro-p group is said to be of coclass when the limit of the coclass of the successive quotients exists and is finite. An infinite pro-p group of coclass is a p-adic pre-space group , [5] since it has a normal subgroup , the translation group, which is a free module over the ring of p-adic integers of uniquely determined rank , the dimension, such that the quotient is a finite p-group, the point group, which acts on uniserially. The dimension is given by

, with some .

A central finiteness result for infinite pro-p groups of coclass is provided by the so-called Theorem D, which is one of the five Coclass Theorems proved in 1994 independently by A. Shalev [9] and by C. R. Leedham-Green , [10] and conjectured in 1980 already by C. R. Leedham-Green and M. F. Newman. [2] Theorem D asserts that there are only finitely many isomorphism classes of infinite pro-p groups of coclass , for any fixed prime and any fixed non-negative integer . As a consequence, if is an infinite pro-p group of coclass , then there exists a minimal integer such that the following three conditions are satisfied for any integer .

S

  1. ,
  2. is not a lower central quotient of any infinite pro-p group of coclass which is not isomorphic to ,
  3. is cyclic of order .

The descendant tree , with respect to the parent definition (P2), of the root with minimal is called the coclass tree of and its unique maximal infinite (reverse-directed) path

is called the mainline (or trunk) of the tree.

Figure 1: A descendant tree. The branches B(2),B(4) have depth 0, and B(5),B(7), resp. B(6),B(8), are isomorphic as trees. Terminology of trees.png
Figure 1: A descendant tree. The branches B(2),B(4) have depth 0, and B(5),B(7), resp. B(6),B(8), are isomorphic as trees.

Tree diagram

Further terminology, used in diagrams visualizing finite parts of descendant trees, is explained in Figure 1 by means of an artificial abstract tree. On the left hand side, a level indicates the basic top-down design of a descendant tree. For concrete trees, such as those in Figure 2, resp. Figure 3, etc., the level is usually replaced by a scale of orders increasing from the top to the bottom. A vertex is capable (or extendable) if it has at least one immediate descendant, otherwise it is terminal (or a leaf). Vertices sharing a common parent are called siblings.

If the descendant tree is a coclass tree with root and with mainline vertices labelled according to the level , then the finite subtree defined as the difference set

is called the nth branch (or twig) of the tree or also the branchwith root, for any . The depth of a branch is the maximal length of the paths connecting its vertices with its root. Figure 1 shows an artificial abstract coclass tree whose branches and both have depth , and the branches and are pairwise isomorphic as graphs. If all vertices of depth bigger than a given integer are removed from the branch , then we obtain the depth-pruned branch. Correspondingly, the depth-pruned coclass tree, resp. the entire coclass tree , consists of the infinite sequence of its pruned branches , resp. branches , connected by the mainline, whose vertices are called infinitely capable.

Virtual periodicity

The periodicity of branches of depth-pruned coclass trees has been proved with analytic methods using zeta functions [3] of groups by M. du Sautoy , [7] and with algebraic techniques using cohomology groups by B. Eick and C. R. Leedham-Green . [8] The former methods admit the qualitative insight of ultimate virtual periodicity, the latter techniques determine the quantitative structure.

Theorem. For any infinite pro-p group of coclass and dimension , and for any given depth , there exists an effective minimal lower bound , where periodicity of length of pruned branches of the coclass tree sets in, that is, there exist graph isomorphisms

for all .

For the proof, click show on the right hand side.

Proof

The graph isomorphisms of depth- pruned branches with roots of sufficiently large order are derived with cohomological methods in Theorem 6, p. 277 and Theorem 9, p. 278 by Eick and Leedham-Green [8] and the effective lower bound for the branch root orders is established in Theorem 29, p. 287, of this article.

These central results can be expressed ostensively: When we look at a coclass tree through a pair of blinkers and ignore a finite number of pre-periodic branches at the top, then we shall see a repeating finite pattern (ultimate periodicity). However, if we take wider blinkers the pre-periodic initial section may become longer (virtual periodicity).

The vertex is called the periodic root of the pruned coclass tree, for a fixed value of the depth . See Figure 1.

Multifurcation and coclass graphs

Assume that parents of finite p-groups are defined as last non-trivial lower central quotients (P2). For a p-group of coclass , we can distinguish its (entire) descendant tree and its coclass-descendant tree, that is the subtree consisting of descendants of coclass only. The group is called coclass-settled if , i.e., if there are no descendants of with bigger coclass than .

The nuclear rank of in the theory of the p-group generation algorithm by M. F. Newman [11] and E. A. O'Brien [12] provides the following criteria.

N

  1. is terminal, and thus trivially coclass-settled, if and only if .
  2. If , then is capable, but it remains unknown whether is coclass-settled.
  3. If , then is capable and definitely not coclass-settled.

In the last case, a more precise assertion is possible: If has coclass and nuclear rank , then it gives rise to an m-fold multifurcation into a regular coclass-r descendant tree and irregular descendant graphs of coclass , for . Consequently, the descendant tree of is the disjoint union

.

Multifurcation is correlated with different orders of the last non-trivial lower central of immediate descendants. Since the nilpotency class increases exactly by a unit, , from a parent to any immediate descendant , the coclass remains stable, , if the last non-trivial lower central is cyclic of order , since then the exponent of the order also increases exactly by a unit, . In this case, is a regular immediate descendant with directed edge of step size, as usual. However, the coclass increases by , if with . Then is called an irregular immediate descendant with directed edge of step size.

If the condition of step size is imposed on all directed edges, then the maximal descendant tree of the trivial group splits into a countably infinite disjoint union

of directed coclass graphs, which are rather forests than trees. More precisely, the above-mentioned Coclass Theorems imply that

is the disjoint union of finitely many coclass trees of pairwise non-isomorphic infinite pro-p groups of coclass (Theorem D) and a finite subgraph of sporadic groups lying outside of any coclass tree.

Identifiers

The SmallGroups Library identifiers of finite groups, in particular of finite p-groups, given in the form

in the following concrete examples of descendant trees, are due to H. U. Besche, B. Eick and E. A. O'Brien . [13] [14] When the group orders are given in a scale on the left hand side, as in Figure 2 and Figure 3, the identifiers are briefly denoted by

.

Depending on the prime , there is an upper bound on the order of groups for which a SmallGroup identifier exists, e.g. for , and for . For groups of bigger orders, a notation with generalized identifiers resembling the descendant structure is employed. A regular immediate descendant, connected by an edge of step size with its parent , is denoted by

,

and an irregular immediate descendant, connected by an edge of step size with its parent , is denoted by

.

The implementations of the p-group generation algorithm in the computational algebra systems GAP and Magma use these generalized identifiers, which go back to J. A. Ascione in 1979 . [15]

Concrete examples of trees

In all examples, the underlying parent definition (P2) corresponds to the usual lower central series. Occasional differences to the parent definition (P3) with respect to the lower exponent-p central series are pointed out.

Coclass 0

The coclass graph

of finite p-groups of coclass does not contain any coclass tree and thus exclusively consists of sporadic groups, namely the trivial group and the cyclic group of order , which is a leaf (however, it is capable with respect to the lower exponent-p central series). For the SmallGroup identifier of is , for it is .

Figure 2: The coclass graph of finite 2-groups with coclass 1 TreeOf2Groups.png
Figure 2: The coclass graph of finite 2-groups with coclass 1

Coclass 1

The coclass graph

of finite p-groups of coclass , also called of maximal class, consists of the unique coclass tree with root , the elementary abelianp-group of rank, and a single isolated vertex (a terminal orphan without proper parent in the same coclass graph, since the directed edge to the trivial group has step size ), the cyclic group of order in the sporadic part (however, this group is capable with respect to the lower exponent-p central series). The tree is the coclass tree of the unique infinite pro-p group of coclass .

For , resp. , the SmallGroup identifier of the root is , resp. , and a tree diagram of the coclass graph from branch down to branch (counted with respect to the p-logarithm of the order of the branch root) is drawn in Figure 2, resp. Figure 3, where all groups of order at least are metabelian, that is non-abelian with derived length (vertices represented by black discs in contrast to contour squares indicating abelian groups). In Figure 3, smaller black discs denote metabelian 3-groups where even the maximal subgroups are non-abelian, a feature which does not occur for the metabelian 2-groups in Figure 2, since they all possess an abelian subgroup of index (usually exactly one). The coclass tree of , resp. , has periodic root and periodicity of length starting with branch , resp. periodic root and periodicity of length setting in with branch . Both trees have branches of bounded depth , so their virtual periodicity is in fact a strict periodicity.

However, the coclass tree of with has unbounded depth and contains non-metabelian groups, and the coclass tree of with has even unbounded width, that is, the number of descendants of a fixed order increases indefinitely with growing order . [16]

With the aid of kernels and targets of Artin transfers, the diagrams in Figure 2 and Figure 3 can be endowed with additional information and redrawn as structured descendant trees.

The concrete examples and of coclass graphs provide an opportunity to give a parametrized polycyclic power-commutator presentation [17] for the complete coclass tree , , mentioned in the lead section as a benefit of the descendant tree concept and as a consequence of the periodicity of the entire coclass tree. In both cases, a group is generated by two elements but the presentation contains the series of higher commutators, , starting with the main commutator. The nilpotency is formally expressed by the relation , when the group is of order .

Figure 3: The coclass graph of finite 3-groups with coclass 1 TreeOf3Groups.png
Figure 3: The coclass graph of finite 3-groups with coclass 1

For , there are two parameters and the pc-presentation is given by

(13)

The 2-groups of maximal class, that is of coclass , form three periodic infinite sequences,

  • the dihedral groups, , , forming the mainline (with infinitely capable vertices),
  • the generalized quaternion groups, , , which are all terminal vertices,
  • the semidihedral groups, , , which are also leaves.

For , there are three parameters and and the pc-presentation is given by

(14)

3-groups with parameter possess an abelian maximal subgroup, those with parameter do not. More precisely, an existing abelian maximal subgroup is unique, except for the two extra special groups and , where all four maximal subgroups are abelian.

In contrast to any bigger coclass , the coclass graph exclusively contains p-groups with abelianization of type , except for its unique isolated vertex . The case is distinguished by the truth of the reverse statement: Any 2-group with abelianization of type is of coclass (O. Taussky's Theorem [18] ).

Figure 4: The interface between finite 3-groups of coclass 1 and 2 of type (3,3) GraphOf3Groups.tiff
Figure 4: The interface between finite 3-groups of coclass 1 and 2 of type (3,3)

Coclass 2

The genesis of the coclass graph with is not uniform. p-groups with several distinct abelianizations contribute to its constitution. For coclass , there are essential contributions from groups with abelianizations of the types , , , and an isolated contribution by the cyclic group of order :

.

Abelianization of type (p,p)

As opposed to p-groups of coclass with abelianization of type or , which arise as regular descendants of abelian p-groups of the same types, p-groups of coclass with abelianization of type arise from irregular descendants of a non-abelian p-group of coclass which is not coclass-settled.

For the prime , such groups do not exist at all, since the 2-group is coclass settled, which is the deeper reason for Taussky's Theorem. This remarkable fact has been observed by Giuseppe Bagnera [19] in 1898 already.

For odd primes , the existence of p-groups of coclass with abelianization of type is due to the fact that the group is not coclass-settled. Its nuclear rank equals , which gives rise to a bifurcation of the descendant tree into two coclass graphs. The regular component is a subtree of the unique tree in the coclass graph . The irregular component becomes a subgraph of the coclass graph when the connecting edges of step size of the irregular immediate descendants of are removed.

For , this subgraph is drawn in Figure 4, which shows the interface between finite 3-groups with coclass and of type . has seven top level vertices of three important kinds, all having order , which have been discovered by G. Bagnera . [19]

  • Firstly, there are two terminal Schur σ-groups and in the sporadic part of the coclass graph .
  • Secondly, the two groups and are roots of finite trees in the sporadic part . However, since they are not coclass-settled, the complete trees are infinite .
  • Finally, the three groups , and give rise to (infinite) coclass trees, e.g., , , , each having a metabelian mainline, in the coclass graph . None of these three groups is coclass-settled.

Displaying additional information on kernels and targets of Artin transfers, we can draw these trees as structured descendant trees.

Definition. Generally, a Schur group (called a closed group by I. Schur, who coined the concept) is a pro-p group whose relation rank coincides with its generator rank . A σ-group is a pro-p group which possesses an automorphism inducing the inversion on its abelianization . A Schur σ-group is a Schur group which is also a σ-group and has a finite abelianization .

is not root of a coclass tree,

since its immediate descendant , which is root of a coclass tree with metabelian mainline vertices, has two siblings , resp. , which give rise to a single, resp. three, coclass tree(s) with non-metabelian mainline vertices having cyclic centres of order and branches of considerable complexity but nevertheless of bounded depth .

Table 1: Quotients of the groups G=G(f,g,h) [5]
Parameters
Abelianization
Class-2 quotient
Class-3 quotient
Class-4 quotient

Pro-3 groups of coclass 2 with non-trivial centre

B. Eick, C. R. Leedham-Green, M. F. Newman and E. A. O'Brien [5] have constructed a family of infinite pro-3 groups with coclass having a non-trivial centre of order . The family members are characterized by three parameters . Their finite quotients generate all mainline vertices with bicyclic centres of type of six coclass trees in the coclass graph . The association of parameters to the roots of these six trees is given in Table 1, the tree diagrams, except for the abelianization , are indicated in Figure 4 and Figure 5, and the parametrized pro-3 presentation is given by

(16)

Figure 5: Finite 3-groups of coclass 2 of type (9,3) TreeOf3Groups39.png
Figure 5: Finite 3-groups of coclass 2 of type (9,3)

Abelianization of type (p²,p)

For , the top levels of the subtree of the coclass graph are drawn in Figure 5. The most important vertices of this tree are the eight siblings sharing the common parent , which are of three important kinds.

  • Firstly, there are three leaves , , having cyclic centre of order , and a single leaf with bicyclic centre of type .
  • Secondly, the group is root of a finite tree .
  • Finally, the three groups , and give rise to infinite coclass trees, e.g., , , , each having a metabelian mainline, the first with cyclic centres of order , the second and third with bicyclic centres of type .

Here, is not root of a coclass tree, since aside from its descendant , which is root of a coclass tree with metabelian mainline vertices, it possesses five further descendants which give rise to coclass trees with non-metabelian mainline vertices having cyclic centres of order and branches of extreme complexity, here partially even with unbounded depth. [5]

Figure 6: Finite 2-groups of coclass 2,3,4 and type (2,2,2) TreeOf2Groups222.png
Figure 6: Finite 2-groups of coclass 2,3,4 and type (2,2,2)

Abelianization of type (p,p,p)

For , resp. , there exists a unique coclass tree with p-groups of type in the coclass graph . Its root is the elementary abelian p-group of type , that is, , resp. . This unique tree corresponds to the pro-2 group of the family by M. F. Newman and E. A. O'Brien, [6] resp. to the pro-3 group given by the parameters in Table 1. For , the tree is indicated in Figure 6, which shows some finite 2-groups with coclass of type .

Coclass 3

Here again, p-groups with several distinct abelianizations contribute to the constitution of the coclass graph . There are regular, resp. irregular, essential contributions from groups with abelianizations of the types , , , , resp. , , , and an isolated contribution by the cyclic group of order .

Abelianization of type (p,p,p)

Since the elementary abelian p-group of rank , that is, , resp. , for , resp. , is not coclass-settled, it gives rise to a multifurcation. The regular component has been described in the section about coclass . The irregular component becomes a subgraph of the coclass graph when the connecting edges of step size of the irregular immediate descendants of are removed.

For , this subgraph is contained in Figure 6. It has nine top level vertices of order which can be divided into terminal and capable vertices.

  • The two groups and are leaves.
  • The five groups and the two groups are infinitely capable.

The trees arising from the capable vertices are associated with infinite pro-2 groups by M. F. Newman and E. A. O'Brien [6] in the following manner.

gives rise to two trees,

associated with family , and

associated with family .

is associated with family .

is associated with family .

is associated with family .

gives rise to

associated with family . Finally,

is associated with family .

Table 2: Class-2 quotients Q of certain metabelian 2-groups G of type (2,2,2) [20]
SmallGroups
identifier of Q
Hall Senior
classification of Q
Schur multiplier
2-rank of G'
4-rank of G'
Maximum of
32.040
32.041
32.037
32.038
32.035
32.036
32.033 or

Hall-Senior classification of 2-groups

Seven of these nine top level vertices have been investigated by E. Benjamin, F. Lemmermeyer and C. Snyder [20] with respect to their occurrence as class-2 quotients of bigger metabelian 2-groups of type and with coclass , which are exactly the members of the descendant trees of the seven vertices. These authors use the classification of 2-groups by M. Hall and J. K. Senior [21] which is put in correspondence with the SmallGroups Library [13] in Table 2. The complexity of the descendant trees of these seven vertices increases with the 2-ranks and 4-ranks indicated in Table 2, where the maximal subgroups of index in are denoted by , for .

History

Descendant trees with central quotients as parents (P1) are implicit in P. Hall's 1940 paper [22] about isoclinism of groups. Trees with last non-trivial lower central quotients as parents (P2) were first presented by C. R. Leedham-Green at the International Congress of Mathematicians in Vancouver, 1974 . [1] The first extensive tree diagrams have been drawn manually by J. A. Ascione, G. Havas and C. R. Leedham-Green (1977) , [23] by J. A. Ascione (1979) , [15] and by B. Nebelung (1989) . [24] In the former two cases, the parent definition by means of the lower exponent-p central series (P3) was adopted in view of computational advantages, in the latter case, where theoretical aspects were focussed, the parents were taken with respect to the usual lower central series (P2).

See also

Related Research Articles

In mathematics, a geometric algebra is an extension of elementary algebra to work with geometrical objects such as vectors. Geometric algebra is built out of two fundamental operations, addition and the geometric product. Multiplication of vectors results in higher-dimensional objects called multivectors. Compared to other formalisms for manipulating geometric objects, geometric algebra is noteworthy for supporting vector division and addition of objects of different dimensions.

<span class="mw-page-title-main">Uncertainty principle</span> Foundational principle in quantum physics

The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known.

Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.

In mathematics, particularly linear algebra, an orthonormal basis for an inner product space V with finite dimension is a basis for whose vectors are orthonormal, that is, they are all unit vectors and orthogonal to each other. For example, the standard basis for a Euclidean space is an orthonormal basis, where the relevant inner product is the dot product of vectors. The image of the standard basis under a rotation or reflection is also orthonormal, and every orthonormal basis for arises in this fashion.

<span class="mw-page-title-main">Lattice model (physics)</span>

In mathematical physics, a lattice model is a mathematical model of a physical system that is defined on a lattice, as opposed to a continuum, such as the continuum of space or spacetime. Lattice models originally occurred in the context of condensed matter physics, where the atoms of a crystal automatically form a lattice. Currently, lattice models are quite popular in theoretical physics, for many reasons. Some models are exactly solvable, and thus offer insight into physics beyond what can be learned from perturbation theory. Lattice models are also ideal for study by the methods of computational physics, as the discretization of any continuum model automatically turns it into a lattice model. The exact solution to many of these models includes the presence of solitons. Techniques for solving these include the inverse scattering transform and the method of Lax pairs, the Yang–Baxter equation and quantum groups. The solution of these models has given insights into the nature of phase transitions, magnetization and scaling behaviour, as well as insights into the nature of quantum field theory. Physical lattice models frequently occur as an approximation to a continuum theory, either to give an ultraviolet cutoff to the theory to prevent divergences or to perform numerical computations. An example of a continuum theory that is widely studied by lattice models is the QCD lattice model, a discretization of quantum chromodynamics. However, digital physics considers nature fundamentally discrete at the Planck scale, which imposes upper limit to the density of information, aka Holographic principle. More generally, lattice gauge theory and lattice field theory are areas of study. Lattice models are also used to simulate the structure and dynamics of polymers.

In linear algebra and functional analysis, the min-max theorem, or variational theorem, or Courant–Fischer–Weyl min-max principle, is a result that gives a variational characterization of eigenvalues of compact Hermitian operators on Hilbert spaces. It can be viewed as the starting point of many results of similar nature.

In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities. For example,

<span class="mw-page-title-main">Giant component</span> Large connected component of a random graph

In network theory, a giant component is a connected component of a given random graph that contains a significant fraction of the entire graph's vertices.

In cryptography, XTR is an algorithm for public-key encryption. XTR stands for 'ECSTR', which is an abbreviation for Efficient and Compact Subgroup Trace Representation. It is a method to represent elements of a subgroup of a multiplicative group of a finite field. To do so, it uses the trace over to represent elements of a subgroup of .

In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments. By contrast, the study of general operators on infinite-dimensional spaces often requires a genuinely different approach.

<span class="mw-page-title-main">SIC-POVM</span>

In the context of quantum mechanics and quantum information theory, symmetric, informationally complete, positive operator-valued measures (SIC-POVMs) are a particular type of generalized measurement (POVM). SIC-POVMs are particularly notable thanks to their defining features of (1) being informationally complete; (2)having the minimal number of outcomes compatible with informational completeness, and (3) being highly symmetric. In this context, informational completeness is the property of a POVM of allowing to fully reconstruct input states from measurement data.

In cryptography, Learning with errors (LWE) is a mathematical problem that is widely used in cryptography to create secure encryption algorithms. It is based on the idea of representing secret information as a set of equations with errors. In other words, LWE is a way to hide the value of a secret by introducing noise to it. In more technical terms, it refers to the computational problem of inferring a linear -ary function over a finite ring from given samples some of which may be erroneous. The LWE problem is conjectured to be hard to solve, and thus to be useful in cryptography.

In the mathematical field of group theory, an Artin transfer is a certain homomorphism from an arbitrary finite or infinite group to the commutator quotient group of a subgroup of finite index. Originally, such mappings arose as group theoretic counterparts of class extension homomorphisms of abelian extensions of algebraic number fields by applying Artin's reciprocity maps to ideal class groups and analyzing the resulting homomorphisms between quotients of Galois groups. However, independently of number theoretic applications, a partial order on the kernels and targets of Artin transfers has recently turned out to be compatible with parent-descendant relations between finite p-groups, which can be visualized in descendant trees. Therefore, Artin transfers provide a valuable tool for the classification of finite p-groups and for searching and identifying particular groups in descendant trees by looking for patterns defined by the kernels and targets of Artin transfers. These strategies of pattern recognition are useful in purely group theoretic context, as well as for applications in algebraic number theory concerning Galois groups of higher p-class fields and Hilbert p-class field towers.

In mathematics, specifically group theory, finite groups of prime power order , for a fixed prime number and varying integer exponents , are briefly called finitep-groups.

In the mathematical subject of group theory, a one-relator group is a group given by a group presentation with a single defining relation. One-relator groups play an important role in geometric group theory by providing many explicit examples of finitely presented groups.

In automata theory, an alternating timed automaton (ATA) is a mix of both timed automaton and alternating finite automaton. That is, it is a sort of automata which can measure time and in which there exists universal and existential transition.

q-Gaussian processes are deformations of the usual Gaussian distribution. There are several different versions of this; here we treat a multivariate deformation, also addressed as q-Gaussian process, arising from free probability theory and corresponding to deformations of the canonical commutation relations. For other deformations of Gaussian distributions, see q-Gaussian distribution and Gaussian q-distribution.

In mathematical logic, specifically in the discipline of model theory, the Fraïssé limit is a method used to construct (infinite) mathematical structures from their (finite) substructures. It is a special example of the more general concept of a direct limit in a category. The technique was developed in the 1950s by its namesake, French logician Roland Fraïssé.

Tau functions are an important ingredient in the modern mathematical theory of integrable systems, and have numerous applications in a variety of other domains. They were originally introduced by Ryogo Hirota in his direct method approach to soliton equations, based on expressing them in an equivalent bilinear form.

Hamiltonian truncation is a numerical method used to study quantum field theories (QFTs) in spacetime dimensions. Hamiltonian truncation is an adaptation of the Rayleigh–Ritz method from quantum mechanics. It is closely related to the exact diagonalization method used to treat spin systems in condensed matter physics. The method is typically used to study QFTs on spacetimes of the form , specifically to compute the spectrum of the Hamiltonian along . A key feature of Hamiltonian truncation is that an explicit ultraviolet cutoff is introduced, akin to the lattice spacing a in lattice Monte Carlo methods. Since Hamiltonian truncation is a nonperturbative method, it can be used to study strong-coupling phenomena like spontaneous symmetry breaking.

References

  1. 1 2 3 Newman, M. F. (1990). "Groups of prime-power order". Groups—Canberra 1989. Lecture Notes in Mathematics. Vol. 1456. Springer. pp. 49–62. doi:10.1007/bfb0100730. ISBN   978-3-540-53475-4.
  2. 1 2 Leedham-Green, C. R.; Newman, M. F. (1980). "Space groups and groups of prime power order I". Arch. Math. 35: 193–203. doi:10.1007/bf01235338. S2CID   121022964.
  3. 1 2 du Sautoy, M.; Segal, D. (2000). "Zeta functions of groups". New horizons in pro-p groups. Progress in Mathematics. Vol. 184. Basel: Birkhäuser. pp. 249–28.
  4. Leedham-Green, C. R.; McKay, S. (2002). "The structure of groups of prime power order". London Mathematical Society Monographs. New Series. Oxford University Press. 27.
  5. 1 2 3 4 5 Eick, B.; Leedham-Green, C. R.; Newman, M. F.; O'Brien, E. A. (2013). "On the classification of groups of prime-power order by coclass: the 3-groups of coclass 2". Int. J. Algebra Comput. 23 (5): 1243–1288. doi:10.1142/s0218196713500252.
  6. 1 2 3 Newman, M. F.; O'Brien, E. A. (1999). "Classifying 2-groups by coclass". Trans. Amer. Math. Soc. 351: 131–169. doi: 10.1090/s0002-9947-99-02124-8 .
  7. 1 2 du Sautoy, M. (2001). "Counting p-groups and nilpotent groups". Inst. Hautes Études Sci. Publ. Math. 92: 63–112.
  8. 1 2 3 Eick, B.; Leedham-Green, C. R. (2008). "On the classification of prime-power groups by coclass". Bull. London Math. Soc. 40 (2): 274–288. doi:10.1112/blms/bdn007.
  9. Shalev, A. (1994). "The structure of finite p-groups: effective proof of the coclass conjectures". Invent. Math. 115: 315–345. Bibcode:1994InMat.115..315S. doi:10.1007/bf01231763. S2CID   122256486.
  10. Leedham-Green, C. R. (1994). "The structure of finite p-groups". J. London Math. Soc. 50: 49–67. doi: 10.1112/jlms/50.1.49 .
  11. Newman, M. F. (1977). Determination of groups of prime-power order. pp. 73-84, in: Group Theory, Canberra, 1975, Lecture Notes in Math., Vol. 573, Springer, Berlin.
  12. O'Brien, E. A. (1990). "The p-group generation algorithm". J. Symbolic Comput. 9 (5–6): 677–698. doi: 10.1016/s0747-7171(08)80082-x .
  13. 1 2 Besche, H. U.; Eick, B.; O'Brien, E. A. (2005). The SmallGroups Library – a library of groups of small order. An accepted and refereed GAP 4 package, available also in MAGMA.
  14. Besche, H. U.; Eick, B.; O'Brien, E. A. (2002). "A millennium project: constructing small groups". Int. J. Algebra Comput. 12 (5): 623–644. doi:10.1142/s0218196702001115.
  15. 1 2 Ascione, J. A. (1979). On 3-groups of second maximal class. Ph. D. Thesis, Australian National University, Canberra.
  16. Dietrich, Heiko; Eick, Bettina; Feichtenschlager, Dörte (2008), "Investigating p-groups by coclass with GAP", Computational group theory and the theory of groups, Contemporary Mathematics, vol. 470, Providence, RI: American Mathematical Society, pp. 45–61, doi: 10.1090/conm/470/09185 , ISBN   9780821843659, MR   2478413
  17. Blackburn, N. (1958). "On a special class of p-groups". Acta Math. 100 (1–2): 45–92. doi: 10.1007/bf02559602 .
  18. Taussky, O. (1937). "A remark on the class field tower". J. London Math. Soc. 12 (2): 82–85. doi:10.1112/jlms/s1-12.1.82.
  19. 1 2 Bagnera, G. (1898). "La composizione dei gruppi finiti il cui grado è la quinta potenza di un numero primo". Ann. Di Mat. (Ser. 3). 1: 137–228. doi:10.1007/bf02419191. S2CID   119799947.
  20. 1 2 Benjamin, E.; Lemmermeyer, F.; Snyder, C. (2003). "Imaginary quadratic fields with ". J. Number Theory. 103: 38–70. arXiv: math/0207307 . doi:10.1016/S0022-314X(03)00084-2. S2CID   3124132.
  21. Hall, M.; Senior, J. K. (1964). The groups of order . Macmillan, New York.
  22. Hall, P. (1940). "The classification of prime-power groups". J. Reine Angew. Math. 182: 130–141.
  23. Ascione, J. A.; Havas, G.; Leedham-Green, C. R. (1977). "A computer aided classification of certain groups of prime power order". Bull. Austral. Math. Soc. 17 (2): 257–274. doi: 10.1017/s0004972700010467 .
  24. Nebelung, B. (1989). Klassifikation metabelscher 3-Gruppen mit Faktorkommutatorgruppe vom Typ (3,3) und Anwendung auf das Kapitulationsproblem. Inauguraldissertation, Universität zu Köln.