Detergent enzymes

Last updated
Detergent powder containing enzymes Detergent powder with laundry enzymes.jpg
Detergent powder containing enzymes

Detergent enzymes are biological enzymes that are used with detergents. They catalyze the reaction between stains and the water solution, thus aiding stain removal and improving efficiency. [1] Laundry detergent enzymes are the largest application of industrial enzymes. [2]

Contents

They can be a part of both liquid and powder detergents.

History

Otto Röhm introduced the use of enzymes in detergent by using trypsin extracted from the tissues of slaughtered animals. Röhm's formula, though more successful than German household cleaning methods, was considered unstable when used with alkali and bleach.[ clarification needed ] In 1959, yields were improved by microbial synthesis of proteases. [3]

Properties

Laundry enzymes must be able to function normally in a wide array of conditions: water temperatures ranging from 0 to 60 °C; alkaline and acidic environments; solutions with high ionic strength; and the presence of surfactants or oxidizing agents. [4] [2]

Types

The five classes of enzymes found in laundry detergent include proteases, amylases, lipases, cellulases, and mannanases. They break down proteins (e.g. in blood and egg stains), starch, fats, cellulose (e.g. in vegetable puree), and mannans (e.g. in bean gum stains) respectively. [2]

Merits

Household energy savings

For stain removal, conventional household washing machines use heated water, as this increases the solubility of stains. However, heating the water to the required temperature uses a considerable amount of energy; energy usage can be reduced by using detergent enzymes which perform well in cold water, allowing low-temperature washes and removing the need for heated water. [5]

Delicate materials

Clothes made of delicate materials such as wool and silk can be damaged in high-temperature washes, and jeans and denim can fade due to their dark dyes. Low-temperature washes with detergent enzymes can prevent this damage, meaning that consumers can buy clothes from a wider range of materials without worrying about damaging them during washing. [5]

Leather manufacturing

The leather industry was historically considered noxious due to the leather-making process. The traditional procedure involved soaking animal hides in a mixture of urine and lime to remove unwanted hairs, flesh and fat, then kneading them in dog or pigeon feces with bare feet. The subsequent discharge and refuse disposal was severely hazardous to both human health and the environment because of the high amounts of concentrated sulfide and chromium in the effluence. [6]

This method was eventually discarded by the industry in the early 20th century following Röhm's discovery, replaced by a more eco-friendly process involving detergent enzymes. [5] Consequently, hazardous sodium sulfide (used to remove animal hair from hides) usage is lessened by 60%, while water usage for soaking and hair cutting is lowered by 25%. Additionally, toxic pollution and emissions have been reduced by 30%. These enzymes have never completely substituted the industrial chemicals. Nevertheless, the working conditions, wastewater quality, and processing times have been greatly improved. [6]

Replacement for phosphate and synthetic surfactants

Increased legislation has led to a limit on the laundry detergent industry's use of environmentally-unfriendly synthetic surfactants and phosphate salts. In a bid to produce more environmentally-friendly products, several detergent manufacturers have increased their use of enzymes in the production process in combination with lower concentrations of the surfactants and phosphates. These biologically active enzymes include bacteria, yeast, and mushrooms, [7] which produce less chemical pollution and decompose certain toxicants. [8]

Public concerns

Damage to delicate materials

In contrast to the benefits of low-temperature washing, a study of the effects of detergent enzymes on untreated knit and woolen fabrics showed damage proportional to both soaking time and the enzyme concentration. [9]

Skin allergy and testing

Consumers' responses to detergent enzymes have varied. It is reported that some Philippine consumers who are used to laundering by hand slightly suffered from powder detergents, which mainly consisted of laundry enzyme formulations. As a result, it was thought that laundry enzymes have the potential to increase the likelihood of getting occupational type 1 allergic responses. [10] However, a large-scale skin prick test (SPT) containing 15,765 volunteers with 8 different types of detergent enzymes found that the allergy reaction is extremely rare among the public, with only 0.23% showing a reaction. [11] The issue in Filipino consumers is believed to be the rushed hand-laundering method. [10] After various tests with several volunteers worldwide, it is found that exposure to laundry enzymes leads to neither skin allergy (Type I sensitization) nor skin erosion. [10] [11]

Related Research Articles

Detergent Surfactants with cleansing properties, even in dilute solutions

A detergent is a surfactant or a mixture of surfactants with cleansing properties when in dilute solutions. There are a large variety of detergents; often they are the sodium salts of long chain alkyl hydrogen sulphate or a long chain of benzene sulphonic acid. The most commonly found detergents are alkylbenzene sulfonates: a family of soap-like compounds that are more soluble in hard water, because the polar sulfonate is less likely than the polar carboxylate to bind to calcium and other ions found in hard water.

Laundry Washing of clothing and other textiles

Laundry refers to the washing of clothing and other textiles, and, more broadly, their drying and ironing as well. Laundry has been part of history since humans began to wear clothes, so the methods by which different cultures have dealt with this universal human need are of interest to several branches of scholarship. Laundry work has traditionally been highly gendered, with the responsibility in most cultures falling to women. The Industrial Revolution gradually led to mechanized solutions to laundry work, notably the washing machine and later the tumble dryer. Laundry, like cooking and child care, is still done both at home and by commercial establishments outside the home.

Washing machine Machine that washes clothes automatically

A washing machine is a home appliance used to wash laundry. The term is mostly applied to machines that use water as opposed to dry cleaning or ultrasonic cleaners. The user adds laundry detergent, which is sold in liquid or powder form, to the wash water.

Dry cleaning is any cleaning process for clothing and textiles using a solvent other than water.

Microfiber Synthetic fiber

Microfiber is synthetic fiber finer than one denier or decitex/thread, having a diameter of less than ten micrometers. A strand of silk is about one denier and about a fifth of the diameter of a human hair.

Dishwashing Process of cleaning cooking utensils and other items to prevent foodborne illness

Dishwashing, washing the dishes, doing the dishes, or washing up in Great Britain, is the process of cleaning cooking utensils, dishes, cutlery and other items to prevent foodborne illness. This is either achieved by hand in a sink using dishwashing detergent or by using a dishwasher and may take place in a kitchen, utility room, scullery or elsewhere. There are cultural divisions over rinsing and drying after washing.

Tide (brand) Brand-name of a laundry detergent manufactured by Procter & Gamble

Tide is an American brand of laundry detergent manufactured and marketed by Procter & Gamble. Introduced in 1946, it is the highest selling detergent brand in the world, with an estimated 14.3 percent of the global market.

Persil German brand of laundry detergent

Persil is a German brand of laundry detergent manufactured and marketed by Henkel around the world except in the United Kingdom, Ireland, France, Latin America, China, Australia and New Zealand, where it is manufactured and marketed by Unilever. Persil was introduced in 1907 by Henkel. It was the first commercially available laundry detergent that combined bleach with the detergent. The name was derived from two of its original ingredients, sodium perborate and sodium silicate.

A fabric softener or fabric conditioner is a conditioner that is applied to laundry during the rinse cycle in a washing machine to reduce harshness in clothes that are dried in air after machine washing. In contrast to laundry detergents, fabric softeners may be regarded as a kind of after-treatment laundry aid.

Laundry detergent Type of detergent used for cleaning laundry

Laundry detergent is a type of detergent used for cleaning dirty laundry (clothes). Laundry detergent is manufactured in powder and liquid form.

Dishwashing liquid Detergent used for cleaning dishes

Dishwashing liquid, also known as dishwashing soap, dish detergent, and dish soap is a detergent used to assist in dishwashing. It is usually a highly-foaming mixture of surfactants with low skin irritation, and is primarily used for hand washing of glasses, plates, cutlery, and cooking utensils in a sink or bowl. In addition to its primary use, dishwashing liquid also has various informal applications, such as for creating bubbles, clothes washing and cleaning oil-affected birds.

Laundry ball Product promoted as a substitute for laundry detergent

A laundry ball or washing ball is a product promoted as a substitute for laundry detergent. Producers of laundry balls often make pseudoscientific claims about how these balls work and exaggerate the extent of their benefits.

Cleaning agent Substance used to remove dirt or other contaminants

Cleaning agents or hard-surface cleaners are substances used to remove dirt, including dust, stains, bad smells, and clutter on surfaces. Purposes of cleaning agents include health, beauty, removing offensive odor, and avoiding the spread of dirt and contaminants to oneself and others. Some cleaning agents can kill bacteria and clean at the same time. Others, called degreasers, contain organic solvents to help dissolve oils and fats.

Traditionally, soap has been made from animal or plant derived fats and has been used by humans for cleaning purposes for several thousand years. Soap is not harmful to human health but, like any natural or unnatural surfactant, it does have the potential to cause environmental harm by forming a surface film that impedes the diffusion of oxygen into the water if it is added to an aquatic environment faster than it can biodegrade.

Wastewater comes out of the laundry process with additional energy (heat), lint, soil, dyes, finishing agents, and other chemicals from detergents. Some laundry wastewater goes directly into the environment, due to the flaws of water infrastructure. The majority goes to sewage treatment plants before flowing into the environment. Some chemicals remain in the water after treatment, which may contaminate the water system. Some have argued they can be toxic to wildlife, or can lead to eutrophication.

Bleach activator

Bleach activators are compounds that allow a lower washing temperature than would be required otherwise to achieve the full activity of bleaching agents in the wash liquor. Bleaching agents, usually peroxides, are usually sufficiently active only at 60 °C and up. With bleach activators, this activity can be achieved at lower temperatures. Bleach activators are included in some laundry detergent powders, some laundry additive powders, and a few laundry additive pods. They are not included in any liquid laundry detergents. Bleach activators react with hydrogen peroxide in aqueous solution to form peroxy acids. Peroxy acids are more active bleaches than hydrogen peroxide at lower temperatures (<60 °C), but are too unstable to be stored in their active form, and hence must be generated in situ.

Dishwasher detergent Type of detergent specifically used to wash dishes in a dishwasher

Dishwasher detergent is a detergent made for washing dishes in a dishwasher. Dishwasher detergent is different from dishwashing liquid made to wash dishes by hand.

Fabric treatment

Fabric treatments are processes that make fabric softer, or water resistant, or enhance dye penetration after they are woven. Fabric treatments get applied when the textile itself cannot add other properties. Treatments include, scrim, foam lamination, fabric protector or stain repellent, anti microbial and flame retardant.

References

  1. "The role of enzymes in detergent products" (PDF). American Cleaning Institute (ACI). November 8, 2021.
  2. 1 2 3 Kirk, Ole; Borchert, Torben; Fuglsang, Claus (1 August 2002). "Industrial enzyme applications". Current Opinion in Biotechnology. 13 (4): 345–351. doi:10.1016/s0958-1669(02)00328-2. PMID   12323357.
  3. Leisola, Matti; Jokela, Jouni; Pastinen, Ossi; Turunen, Ossi; Schoemaker, Hans. "INDUSTRIAL USE OF ENZYMES" (PDF). Physiology and Maintenance. II: 2–3.
  4. Yim, Joung Han; Lee, Jun Hyuck; Koo, Bon-Hun; Kim, Jung Eun; Han, Se Jong; Do, Hackwon; Kim, Dockyu; Lee, Chang Woo; Park, Ha Ju (2018-02-21). "Crystal structure of a cold-active protease (Pro21717) from the psychrophilic bacterium, Pseudoalteromonas arctica PAMC 21717, at 1.4 Å resolution: Structural adaptations to cold and functional analysis of a laundry detergent enzyme". PLOS ONE. 13 (2): e0191740. Bibcode:2018PLoSO..1391740P. doi: 10.1371/journal.pone.0191740 . ISSN   1932-6203. PMC   5821440 . PMID   29466378.
  5. 1 2 3 "Enzymes in Biological Detergents – The Facts About Laundry Detergents and How They Work". Persil UK. Retrieved 2019-05-19.
  6. 1 2 "From excrement to enzyme: How biotech helped clean up leather production – Rethink Tomorrow". blog.novozymes.com. Archived from the original on 2018-08-23. Retrieved 2019-05-19.
  7. Waldhoff, Heinrich; Spilker, Rudiger, eds. (2016-04-19). Handbook Of Detergents, Part C. doi:10.1201/9781420030334. ISBN   9780429132605.
  8. Gaubert, Alexandra; Jeudy, Jérémy; Rougemont, Blandine; Bordes, Claire; Lemoine, Jérôme; Casabianca, Hervé; Salvador, Arnaud (2016-07-01). "Identification and absolute quantification of enzymes in laundry detergents by liquid chromatography tandem mass spectrometry". Analytical and Bioanalytical Chemistry. 408 (17): 4669–4681. doi:10.1007/s00216-016-9550-8. ISSN   1618-2650. PMID   27098933. S2CID   39950551.
  9. Friedman, Mendel (April 1971). "Effect of Enzymes and Enzyme-Containing Detergent On Strength of Untreated Woolen Fabrics". Textile Research Journal. 41 (4): 315–318. doi:10.1177/004051757104100405. ISSN   0040-5175. S2CID   137326402.
  10. 1 2 3 SARLO, K; CORMIER, E; MACKENZIE, D; SCOTT, L (January 1996). "749 Lack of type I sensitization to laundry enzymes among consumers in the Philippines". Journal of Allergy and Clinical Immunology. 97 (1): 370. doi:10.1016/s0091-6749(96)80967-5. ISSN   0091-6749.
  11. 1 2 Sarlo, Katherine; Kirchner, Donald B.; Troyano, Esperanza; Smith, Larry A.; Carr, Gregory J.; Rodriguez, Carlos (May 2010). "Assessing the risk of type 1 allergy to enzymes present in laundry and cleaning products: Evidence from the clinical data". Toxicology. 271 (3): 87–93. doi:10.1016/j.tox.2010.03.007. ISSN   0300-483X. PMID   20223268.