Digestive enzyme

Last updated
Diagram of the digestive enzymes in the small intestine and pancreas Digestive Enzymes.svg
Diagram of the digestive enzymes in the small intestine and pancreas

Digestive enzymes take part in the chemical process of digestion, which follows the mechanical process of digestion. Food consists of macromolecules of proteins, carbohydrates, and fats that need to be broken down chemically by digestive enzymes in the mouth, stomach, pancreas, and duodenum, before being able to be absorbed into the bloodstream. [1] Initial breakdown is achieved by chewing (mastication) and the use of digestive enzymes of saliva. Once in the stomach further mechanical churning takes place mixing the food with secreted gastric acid. Digestive gastric enzymes take part in some of the chemical process needed for absorption. Most of the enzymatic activity, and hence absorption takes place in the duodenum. [2] [3]

Contents

Digestive enzymes are found in the digestive tracts of animals (including humans) and in the tracts of carnivorous plants, where they aid in the digestion of food, as well as inside cells, especially in their lysosomes, where they function to maintain cellular survival. [4] [5]

Digestive enzymes are classified based on their target substrates: lipases split fatty acids into fats and oils; [6] proteases and peptidases split proteins into small peptides and amino acids; [7] amylases split carbohydrates such as starch and sugars into simple sugars such as glucose, [8] and nucleases split nucleic acids into nucleotides. [9]

Types

Table of the different major digestive enzymes Major digestive enzymes.png
Table of the different major digestive enzymes

Digestive enzymes are found throughout much of the gastrointestinal tract. In the human digestive system, the main sites of digestion are the mouth, stomach, and small intestine. Digestive enzymes are secreted by different exocrine glands including salivary glands, gastric glands, secretory cells in the pancreas, and secretory glands in the small intestine. In some carnivorous plants plant-specific digestive enzymes are used to break down their captured organisms.

Mouth

Complex food substances that are eaten must be broken down into simple, soluble, and diffusible substances before they can be absorbed. In the oral cavity, salivary glands secrete an array of enzymes and substances that aid in digestion and also disinfection. They include the following: [10]

Of note is the diversity of the salivary glands. There are two types of salivary glands:

Stomach

The enzymes that are secreted in the stomach are gastric enzymes. The stomach plays a major role in digestion, both in a mechanical sense by mixing and crushing the food, and also in an enzymatic sense, by digesting it. The following are enzymes produced by the stomach and their respective function:

Pancreas

Pancreas is both an endocrine and an exocrine gland, in that it functions to produce endocrinic hormones released into the circulatory system (such as insulin, and glucagon), to control glucose metabolism, and also to secrete digestive/exocrinic pancreatic juice, which is secreted eventually via the pancreatic duct into the duodenum. Digestive or exocrine function of pancreas is as significant to the maintenance of health as its endocrine function.

Two of the population of cells in the pancreatic parenchyma make up its digestive enzymes:

Pancreatic juice, composed of the secretions of both ductal and acinar cells, contains the following digestive enzymes: [11]

Some of the preceding endogenous enzymes have pharmaceutical counterparts (pancreatic enzymes) that are administered to people with exocrine pancreatic insufficiency.

The pancreas's exocrine function owes part of its notable reliability to biofeedback mechanisms controlling secretion of the juice. The following significant pancreatic biofeedback mechanisms are essential to the maintenance of pancreatic juice balance/production: [13]

Duodenum

The following enzymes/hormones are produced in the duodenum:

Throughout the lining of the small intestine there are numerous brush border enzymes whose function is to further break down the chyme released from the stomach into absorbable particles. These enzymes are absorbed whilst peristalsis occurs. Some of these enzymes include:

Plants

In carnivorous plants, digestive enzymes and acids break down insects and in some plants small animals. In some plants, the leaf collapses on the prey to increase contact, others have a small vessel of digestive liquid. Then digestion fluids are used to digest the prey to get at the needed nitrates and phosphorus. The absorption of the needed nutrients are usually more efficient than in other plants. Digestive enzymes independently came about in carnivorous plants and animals. [16] [17] [18]

Some carnivorous plants like the Heliamphora do not use digestive enzymes, but use bacteria to break down the food. These plants do not have digestive juices, but use the rot of the prey. [19]

Some carnivorous plants digestive enzymes: [20]

See also

Related Research Articles

<span class="mw-page-title-main">Pancreas</span> Organ of the digestive system and endocrine system of vertebrates

The pancreas is an organ of the digestive system and endocrine system of vertebrates. In humans, it is located in the abdomen behind the stomach and functions as a gland. The pancreas is a mixed or heterocrine gland, i.e., it has both an endocrine and a digestive exocrine function. 99% of the pancreas is exocrine and 1% is endocrine. As an endocrine gland, it functions mostly to regulate blood sugar levels, secreting the hormones insulin, glucagon, somatostatin and pancreatic polypeptide. As a part of the digestive system, it functions as an exocrine gland secreting pancreatic juice into the duodenum through the pancreatic duct. This juice contains bicarbonate, which neutralizes acid entering the duodenum from the stomach; and digestive enzymes, which break down carbohydrates, proteins and fats in food entering the duodenum from the stomach.

<span class="mw-page-title-main">Stomach</span> Digestive organ

The stomach is a muscular, hollow organ in the upper gastrointestinal tract of humans and many other animals, including several invertebrates. The stomach has a dilated structure and functions as a vital organ in the digestive system. The stomach is involved in the gastric phase of digestion, following the cephalic phase in which the sight and smell of food and the act of chewing are stimuli. In the stomach a chemical breakdown of food takes place by means of secreted digestive enzymes and gastric acid.

<span class="mw-page-title-main">Duodenum</span> First section of the small intestine

The duodenum is the first section of the small intestine in most higher vertebrates, including mammals, reptiles, and birds. In mammals it may be the principal site for iron absorption. The duodenum precedes the jejunum and ileum and is the shortest part of the small intestine.

<span class="mw-page-title-main">Small intestine</span> Organ in the gastrointestinal tract

The small intestine or small bowel is an organ in the gastrointestinal tract where most of the absorption of nutrients from food takes place. It lies between the stomach and large intestine, and receives bile and pancreatic juice through the pancreatic duct to aid in digestion. The small intestine is about 5.5 metres long and folds many times to fit in the abdomen. Although it is longer than the large intestine, it is called the small intestine because it is narrower in diameter.

Digestion is the breakdown of large insoluble food compounds into small water-soluble components so that they can be absorbed into the blood plasma. In certain organisms, these smaller substances are absorbed through the small intestine into the blood stream. Digestion is a form of catabolism that is often divided into two processes based on how food is broken down: mechanical and chemical digestion. The term mechanical digestion refers to the physical breakdown of large pieces of food into smaller pieces which can subsequently be accessed by digestive enzymes. Mechanical digestion takes place in the mouth through mastication and in the small intestine through segmentation contractions. In chemical digestion, enzymes break down food into the small compounds that the body can use.

<span class="mw-page-title-main">Secretin</span> Hormone involved in stomach, pancreas and liver secretions

Secretin is a hormone that regulates water homeostasis throughout the body and influences the environment of the duodenum by regulating secretions in the stomach, pancreas, and liver. It is a peptide hormone produced in the S cells of the duodenum, which are located in the intestinal glands. In humans, the secretin peptide is encoded by the SCT gene.

Chyme or chymus is the semi-fluid mass of partly digested food that is expelled by a person's or another animal's stomach, through the pyloric valve, into the duodenum.

<span class="mw-page-title-main">Cholecystokinin</span> Hormone of the gastrointestinal system

Cholecystokinin is a peptide hormone of the gastrointestinal system responsible for stimulating the digestion of fat and protein. Cholecystokinin, formerly called pancreozymin, is synthesized and secreted by enteroendocrine cells in the duodenum, the first segment of the small intestine. Its presence causes the release of digestive enzymes and bile from the pancreas and gallbladder, respectively, and also acts as a hunger suppressant.

<span class="mw-page-title-main">Gastric acid</span> Digestive fluid formed in the stomach

Gastric acid, gastric juice, or stomach acid is a digestive fluid formed within the stomach lining. With a pH between 1 and 3, gastric acid plays a key role in digestion of proteins by activating digestive enzymes, which together break down the long chains of amino acids of proteins. Gastric acid is regulated in feedback systems to increase production when needed, such as after a meal. Other cells in the stomach produce bicarbonate, a base, to buffer the fluid, ensuring a regulated pH. These cells also produce mucus – a viscous barrier to prevent gastric acid from damaging the stomach. The pancreas further produces large amounts of bicarbonate and secretes bicarbonate through the pancreatic duct to the duodenum to neutralize gastric acid passing into the digestive tract.

Pancreatic juice is a liquid secreted by the pancreas, which contains a number of digestive enzymes, including trypsinogen, chymotrypsinogen, elastase, carboxypeptidase, pancreatic lipase, nucleases and amylase. The pancreas is located in the visceral region, and is a major part of the digestive system required for proper digestion and subsequent assimilation of macronutrient substances required for living.

<span class="mw-page-title-main">Gastric glands</span> Glands in lining of the human stomach

Gastric glands are glands in the lining of the stomach that play an essential role in the process of digestion. The gastric glands are located in gastric pits (foveolae) in the mucosa. The gastric mucosa is covered in surface mucous cells that produce the mucus necessary to protect the stomach epithelial lining from gastric acid secreted by the glands, and from pepsin a digestive enzyme. Surface mucous cells follow the indentations and partly line the gastric pits. Other mucus secreting cells are found in the necks of the glands. These are mucous neck cells that produce a different kind of mucus.

<span class="mw-page-title-main">Enteroendocrine cell</span> Cell that produces gastrointestinal hormones

Enteroendocrine cells are specialized cells of the gastrointestinal tract and pancreas with endocrine function. They produce gastrointestinal hormones or peptides in response to various stimuli and release them into the bloodstream for systemic effect, diffuse them as local messengers, or transmit them to the enteric nervous system to activate nervous responses. Enteroendocrine cells of the intestine are the most numerous endocrine cells of the body. They constitute an enteric endocrine system as a subset of the endocrine system just as the enteric nervous system is a subset of the nervous system. In a sense they are known to act as chemoreceptors, initiating digestive actions and detecting harmful substances and initiating protective responses. Enteroendocrine cells are located in the stomach, in the intestine and in the pancreas. Microbiota play key roles in the intestinal immune and metabolic responses in these enteroendocrine cells via their fermentation product, acetate.

Gastrointestinal physiology is the branch of human physiology that addresses the physical function of the gastrointestinal (GI) tract. The function of the GI tract is to process ingested food by mechanical and chemical means, extract nutrients and excrete waste products. The GI tract is composed of the alimentary canal, that runs from the mouth to the anus, as well as the associated glands, chemicals, hormones, and enzymes that assist in digestion. The major processes that occur in the GI tract are: motility, secretion, regulation, digestion and circulation. The proper function and coordination of these processes are vital for maintaining good health by providing for the effective digestion and uptake of nutrients.

The secretin-cholecystokinin test is a combination of the secretin test and the cholecystokinin test and is used to assess the function of both the pancreas and gall bladder.

The nervous system, and endocrine system collaborate in the digestive system to control gastric secretions, and motility associated with the movement of food throughout the gastrointestinal tract, including peristalsis, and segmentation contractions.

<span class="mw-page-title-main">Ductal cells</span>

Ductal cells refer to the epithelial cell lining of the pancreatic duct that deliver enzymes from the acinar cells to the duodenum. They have the essential function of producing bicarbonate-rich (HCO3-) secretion to neutralize stomach acidity. The hormone secretin stimulates ductal cells and is responsible for maintaining the duodenal pH and preventing duodenal injury from acidic chyme. Ductal cells mix their production with acinar cells to make up the pancreatic juice.

<span class="mw-page-title-main">Human digestive system</span> Digestive system in humans

The human digestive system consists of the gastrointestinal tract plus the accessory organs of digestion. Digestion involves the breakdown of food into smaller and smaller components, until they can be absorbed and assimilated into the body. The process of digestion has three stages: the cephalic phase, the gastric phase, and the intestinal phase.

Lundh's test is a test of function of the exocrine function of the pancreas gland.

Heterocrine glands are the glands which function as both exocrine gland and endocrine gland. These glands exhibit a unique and diverse secretory function encompassing the release of proteins and non-proteinaceous compounds, endocrine and exocrine secretions into both the bloodstream and ducts respectively, thereby bridging the realms of internal and external communication within the body. This duality allows them to serve crucial roles in regulating various physiological processes and maintaining homeostasis. These include the gonads, pancreas and salivary glands.

<span class="mw-page-title-main">Monitor peptide</span>

Monitor peptide, also known as pancreatic secretory trypsin inhibitor I (PSTI-I) or pancreatic secretory trypsin inhibitor 61 (PSTI-61), is a peptide that plays an important role in the regulation of the digestive system, specifically the release of cholecystokinin (CCK).

References

  1. Patricia, Justin J.; Dhamoon, Amit S. (2024). "Physiology, Digestion". StatPearls. StatPearls Publishing.
  2. "22.10C: Digestive Processes of the Small Intestine". Medicine LibreTexts. 2018-07-22. Retrieved 2023-08-14.
  3. Heda, Rajiv; Toro, Fadi; Tombazzi, Claudio R. (2024). "Physiology, Pepsin". StatPearls. StatPearls Publishing.
  4. Freund, Matthias; Graus, Dorothea; Fleischmann, Andreas; Gilbert, Kadeem J; Lin, Qianshi; Renner, Tanya; Stigloher, Christian; Albert, Victor A; Hedrich, Rainer; Fukushima, Kenji (2022-05-23). "The digestive systems of carnivorous plants". Plant Physiology. 190 (1): 44–59. doi:10.1093/plphys/kiac232. ISSN   0032-0889. PMC   9434158 . PMID   35604105.
  5. "Enzymes: What Are Enzymes, Pancreas, Digestion & Liver Function". Cleveland Clinic. Retrieved 2023-08-14.
  6. "Lipase | Fat-digesting, Pancreatic, Lipolytic | Britannica". www.britannica.com. Retrieved 2023-08-14.
  7. "Proteolytic enzyme | Description, Types, & Functions | Britannica". www.britannica.com. Retrieved 2023-08-14.
  8. "3.3: Digestion and Absorption of Carbohydrates". Medicine LibreTexts. 2017-06-14. Retrieved 2023-08-14.
  9. "Pancreatic nucleases - Big Chemical Encyclopedia". chempedia.info. Retrieved 2023-08-14.
  10. Brown, Thomas A. "Rapid Review Physiology." Mosby Elsevier, 1st Ed. p. 235
  11. Bowen, R. "Exocrine Secretion of the Pancreas"
  12. Pandol SJ. The Exocrine Pancreas. San Rafael (CA): Morgan & Claypool Life Sciences; 2010
  13. Brown, Thomas A. "Rapid Review Physiology." Mosby Elsevier, 1st Ed. p. 244
  14. Morino, P; Mascagni, F; McDonald, A; Hökfelt, T (1994). "Cholecystokinin corticostriatal pathway in the rat: Evidence for bilateral origin from medial prefrontal cortical areas". Neuroscience. 59 (4): 939–52. doi:10.1016/0306-4522(94)90297-6. PMID   7520138. S2CID   32097183.
  15. "Small Intestinal Brush Border Enzymes".
  16. carnivorousplants.org, digestion
  17. The Uptake of Digestion Products by Drosera, by Chandler, Graeme, 1978
  18. Carnivory of Byblis revisited - A simple method for enzyme testing on carnivorous plants, by Hartmeyer, Siegfried 1997
  19. McPherson, S., A. Wistuba, A. Fleischmann & J. Nerz 2011. Sarraceniaceae of South America . Redfern Natural History Productions, Poole.
  20. Ravee, R.; Goh, H. H.; Goh, Hoe-Han (2018). "Discovery of digestive enzymes in carnivorous plants with focus on proteases". PeerJ. 6: e4914. doi: 10.7717/peerj.4914 . PMC   5993016 . PMID   29888132.