Mannose-binding protein-associated serine protease

Last updated

Mannose-binding protein-associated serine protease are serine proteases involved in the complement system. [1] [2]

Types include:

See also

Related Research Articles

<span class="mw-page-title-main">Complement system</span> Part of the immune system that enhances the ability of antibodies and phagocytic cells

The complement system, also known as complement cascade, is a part of the immune system that enhances (complements) the ability of antibodies and phagocytic cells to clear microbes and damaged cells from an organism, promote inflammation, and attack the pathogen's cell membrane. It is part of the innate immune system, which is not adaptable and does not change during an individual's lifetime. The complement system can, however, be recruited and brought into action by antibodies generated by the adaptive immune system.

<span class="mw-page-title-main">C3-convertase</span>

C3 convertase belongs to family of serine proteases and is necessary in innate immunity as a part of the complement system which eventuate in opsonisation of particles, release of inflammatory peptides, C5 convertase formation and cell lysis.

Pattern recognition receptors (PRRs) play a crucial role in the proper function of the innate immune system. PRRs are germline-encoded host sensors, which detect molecules typical for the pathogens. They are proteins expressed mainly by cells of the innate immune system, such as dendritic cells, macrophages, monocytes, neutrophils, as well as by epithelial cells, to identify two classes of molecules: pathogen-associated molecular patterns (PAMPs), which are associated with microbial pathogens, and damage-associated molecular patterns (DAMPs), which are associated with components of host's cells that are released during cell damage or death. They are also called primitive pattern recognition receptors because they evolved before other parts of the immune system, particularly before adaptive immunity. PRRs also mediate the initiation of antigen-specific adaptive immune response and release of inflammatory cytokines.

<span class="mw-page-title-main">Lectin pathway</span>

The lectin pathway or MBL pathway is a type of cascade reaction in the complement system, similar in structure to the classical complement pathway, in that, after activation, it proceeds through the action of C4 and C2 to produce activated complement proteins further down the cascade. In contrast to the classical complement pathway, the lectin pathway does not recognize an antibody bound to its target. The lectin pathway starts with mannose-binding lectin (MBL) or ficolin binding to certain sugars.

<span class="mw-page-title-main">Complement component 1r</span> Protein-coding gene in humans

Complement C1r subcomponent is a protein involved in the complement system of the innate immune system. In humans, C1r is encoded by the C1R gene.

<span class="mw-page-title-main">Complement component 1s</span> Protein found in humans

Complement component 1s is a protein involved in the complement system. C1s is part of the C1 complex. In humans, it is encoded by the C1S gene.

<span class="mw-page-title-main">MASP1 (protein)</span> Protein-coding gene in the species Homo sapiens

Mannan-binding lectin serine protease 1 also known as mannose-associated serine protease 1 (MASP-1) is an enzyme that in humans is encoded by the MASP1 gene.

<span class="mw-page-title-main">MASP2 (protein)</span> Protein-coding gene in the species Homo sapiens

Mannan-binding lectin serine protease 2 also known as mannose-binding protein-associated serine protease 2 (MASP-2) is an enzyme that in humans is encoded by the MASP2 gene.

<span class="mw-page-title-main">Factor D</span> Class of enzymes

Factor D is a protein which in humans is encoded by the CFD gene. Factor D is involved in the alternative complement pathway of the complement system where it cleaves factor B.

C4b-binding protein (C4BP) is a protein complex involved in the complement system where it acts as inhibitor. C4BP has an octopus-like structure with a central stalk and seven branching alpha-chains. The main form of C4BP in human blood is composed of 7 identical alpha-chains and one unique beta-chain, which in turn binds anticoagulant, vitamin K-dependent protein S.

Collectins (collagen-containing C-type lectins) are a part of the innate immune system. They form a family of collagenous Ca2+-dependent defense lectins, which are found in animals. Collectins are soluble pattern recognition receptors (PRRs). Their function is to bind to oligosaccharide structure or lipids that are on the surface of microorganisms. Like other PRRs they bind pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) of oligosaccharide origin. Binding of collectins to microorganisms may trigger elimination of microorganisms by aggregation, complement activation, opsonization, activation of phagocytosis, or inhibition of microbial growth. Other functions of collectins are modulation of inflammatory, allergic responses, adaptive immune system and clearance of apoptotic cells.

<span class="mw-page-title-main">Mannan-binding lectin</span> Mammalian protein found in Homo sapiens

Mannose-binding lectin (MBL), also called mannan-binding lectin or mannan-binding protein (MBP), is a lectin that is instrumental in innate immunity as an opsonin and via the lectin pathway.

The mannose receptor is a C-type lectin primarily present on the surface of macrophages, immature dendritic cells and liver sinusoidal endothelial cells, but is also expressed on the surface of skin cells such as human dermal fibroblasts and keratinocytes. It is the first member of a family of endocytic receptors that includes Endo180 (CD280), M-type PLA2R, and DEC-205 (CD205).

<span class="mw-page-title-main">LMAN1</span> Protein-coding gene in the species Homo sapiens

Protein ERGIC-53 also known as ER-Golgi intermediate compartment 53 kDa protein or lectin mannose-binding 1 is a protein that in humans is encoded by the LMAN1 gene.

<span class="mw-page-title-main">FCN1</span> Protein-coding gene in the species Homo sapiens

Ficolin-1, and also commonly termed M-ficolin is a protein that in humans is encoded by the FCN1 gene.

<span class="mw-page-title-main">C3a (complement)</span>

C3a is one of the proteins formed by the cleavage of complement component 3; the other is C3b. C3a is a 77 residue anaphylatoxin that binds to the C3a receptor (C3aR), a class A G protein-coupled receptor. It plays a large role in the immune response.

<span class="mw-page-title-main">MBL deficiency</span> Human disease

MBL deficiency or mannose-binding lectin deficiency is an illness that has an impact on immunity. Low levels of mannose-binding lectin, an immune system protein, are present in the blood of those who have this illness. It's unclear if this deficiency increases the risk of recurrent infections in those who are affected.

Mannose-binding lectin-associated protein of 44 kDa (MAp44) is a protein arising from the human MASP1 gene. MASP-1, MASP-3 and MAp44 are alternative splice products of the MASP1 gene. MAp44 has been suggested to act as a competitive inhibitor of lectin pathway activation, by displacing MASP-2 from MBL, hence preventing cleavage of C4 and C2

Ficolins are pattern recognition receptors that bind to acetyl groups present in the carbohydrates of bacterial surfaces and mediate activation of the lectin pathway of the complement cascade.

Mannan-binding lectin-associated serine protease-2 is an enzyme. This enzyme catalyses the following chemical reaction

References

  1. Dobó, József; Pál, Gábor; Cervenak, László; Gál, Péter (November 2016). "The emerging roles of mannose-binding lectin-associated serine proteases (MASPs) in the lectin pathway of complement and beyond". Immunological Reviews. 274 (1): 98–111. doi:10.1111/imr.12460. ISSN   1600-065X. PMID   27782318. S2CID   23295837.
  2. Sato, Tetsuo; Endo, Yuichi; Matsushita, Misao; Fujita, Teizo (January 10, 1994). "Molecular characterization of a novel serine protease involved in activation of the complement system by mannose-binding protein". International Immunology. 6 (4). Japan: Fukushima Medical College: 665–669. CiteSeerX   10.1.1.945.9004 . doi:10.1093/intimm/6.4.665. PMID   8018603.