Cathepsin G is a protein that in humans is encoded by the CTSG gene. It is one of the three serine proteases of the chymotrypsin family that are stored in the azurophil granules, and also a member of the peptidase S1 protein family. Cathepsin G plays an important role in eliminating intracellular pathogens and breaking down tissues at inflammatory sites, as well as in anti-inflammatory response. [5] [6] [7] [8]
The CTSG gene is located at chromosome 14q11.2, consisting of 5 exons. Each residue of the catalytic triad is located on a separate exon. Five polymorphisms have been identified by scanning the entire coding region. [9] Cathepsin G is one of those homologous protease that evolved from a common ancestor by gene duplication. [10]
Cathepsin G is a 255-amino-acid-residue protein including an 18-residue signal peptide, a two-residue activation peptide at the N-terminus and a carboxy terminal extension. [11] The activity of cathepsin G depends on a catalytic triad composed of aspartate, histidine and serine residues which are widely separated in the primary sequence but close to each other at the active site of the enzyme in the tertiary structure. [12]
Cathepsin G has a specificity similar to that of chymotrypsin C, but it is most closely related to other immune serine proteases, such as neutrophil elastase and the granzymes. [13] As a neutrophil serine protease, was first identified as degradative enzyme that acts intracellularly to degrade ingested host pathogens and extracellularly in the breakdown of ECM components at inflammatory sites. [14] It localizes to Neutrophil extracellular traps (NETs), via its high affinity for DNA, an unusual property for serine proteases. [13] Transcript variants utilizing alternative polyadenylation signals exist for this gene. [15] Cathepsin G was also found to exert broad-spectrum antibacterial action against Gram-negative and –positive bacteria independent of the function mentioned above. [16] Other functions of cathepsin G have been reported, including cleavage of receptors, conversion of angiotensin I to angiotensin II, platelet activation, and induction of airway submucosal gland secretion. [17] [18] [19] [20] [21] Potential implications of the enzyme in blood-brain barrier breakdown was also found. [22]
Cathepsin G has been reported to play an important role in a variety of diseases, including rheumatoid arthritis, coronary artery disease, periodontitis, ischemic reperfusion injury, and bone metastasis. [23] [24] [25] [26] [27] It is also implicated in a variety of infectious inflammatory diseases, including chronic obstructive pulmonary disease, acute respiratory distress syndrome, and cystic fibrosis. [28] [29] [30] A recent study shows that patients with CTSG gene polymorphisms have higher risk of chronic postsurgical pain, suggesting cathepsin G may serve as a novel target for pain control and a potential marker to predict chronic postsurgical pain. [31] An upregulation of cathepsin G was reported in studies of keratoconus. [32]
Cathepsin G has been found to interact with:
Cathepsin G is inhibited by:
Cathepsin G lowers levels of:
Alpha-1 antitrypsin or α1-antitrypsin is a protein belonging to the serpin superfamily. It is encoded in humans by the SERPINA1 gene. A protease inhibitor, it is also known as alpha1–proteinase inhibitor (A1PI) or alpha1-antiproteinase (A1AP) because it inhibits various proteases. In older biomedical literature it was sometimes called serum trypsin inhibitor, because its capability as a trypsin inhibitor was a salient feature of its early study. As a type of enzyme inhibitor, it protects tissues from enzymes of inflammatory cells, especially neutrophil elastase, and has a reference range in blood of 0.9–2.3 g/L, but the concentration can rise manyfold upon acute inflammation.
Serpins are a superfamily of proteins with similar structures that were first identified for their protease inhibition activity and are found in all kingdoms of life. The acronym serpin was originally coined because the first serpins to be identified act on chymotrypsin-like serine proteases. They are notable for their unusual mechanism of action, in which they irreversibly inhibit their target protease by undergoing a large conformational change to disrupt the target's active site. This contrasts with the more common competitive mechanism for protease inhibitors that bind to and block access to the protease active site.
In molecular biology, elastase is an enzyme from the class of proteases (peptidases) that break down proteins. In particular, it is a serine protease.
Alpha 2-antiplasmin is a serine protease inhibitor (serpin) responsible for inactivating plasmin. Plasmin is an important enzyme that participates in fibrinolysis and degradation of various other proteins. This protein is encoded by the SERPINF2 gene.
Cathepsins are proteases found in all animals as well as other organisms. There are approximately a dozen members of this family, which are distinguished by their structure, catalytic mechanism, and which proteins they cleave. Most of the members become activated at the low pH found in lysosomes. Thus, the activity of this family lies almost entirely within those organelles. There are, however, exceptions such as cathepsin K, which works extracellularly after secretion by osteoclasts in bone resorption. Cathepsins have a vital role in mammalian cellular turnover.
Tryptase is the most abundant secretory granule-derived serine proteinase contained in mast cells and has been used as a marker for mast cell activation. Club cells contain tryptase, which is believed to be responsible for cleaving the hemagglutinin surface protein of influenza A virus, thereby activating it and causing the symptoms of flu.
Proteinase 3, also known as PRTN3, is an enzyme that in humans is encoded by the PRTN3 gene.
Cathepsin S is a protein that in humans is encoded by the CTSS gene. Transcript variants utilizing alternative polyadenylation signals exist for this gene.
Cathepsin C (CTSC) also known as dipeptidyl peptidase I (DPP-I) is a lysosomal exo-cysteine protease belonging to the peptidase C1 protein family, a subgroup of the cysteine cathepsins. In humans, it is encoded by the CTSC gene.
Neutrophil elastase is a serine proteinase in the same family as chymotrypsin and has broad substrate specificity. Neutrophil elastase is secreted by neutrophils during inflammation, and destroys bacteria and host tissue. It also localizes to neutrophil extracellular traps (NETs), via its high affinity for DNA, an unusual property for serine proteases.
Cathepsin B belongs to a family of lysosomal cysteine proteases known as the cysteine cathepsins and plays an important role in intracellular proteolysis. In humans, cathepsin B is encoded by the CTSB gene. Cathepsin B is upregulated in certain cancers, in pre-malignant lesions, and in various other pathological conditions.
N-formyl peptide receptor 2 (FPR2) is a G-protein coupled receptor (GPCR) located on the surface of many cell types of various animal species. The human receptor protein is encoded by the FPR2 gene and is activated to regulate cell function by binding any one of a wide variety of ligands including not only certain N-Formylmethionine-containing oligopeptides such as N-Formylmethionine-leucyl-phenylalanine (FMLP) but also the polyunsaturated fatty acid metabolite of arachidonic acid, lipoxin A4 (LXA4). Because of its interaction with lipoxin A4, FPR2 is also commonly named the ALX/FPR2 or just ALX receptor.
Proteinase-activated receptor 1 (PAR1) also known as protease-activated receptor 1 or coagulation factor II (thrombin) receptor is a protein that in humans is encoded by the F2R gene. PAR1 is a G protein-coupled receptor and one of four protease-activated receptors involved in the regulation of thrombotic response. Highly expressed in platelets and endothelial cells, PAR1 plays a key role in mediating the interplay between coagulation and inflammation, which is important in the pathogenesis of inflammatory and fibrotic lung diseases. It is also involved both in disruption and maintenance of endothelial barrier integrity, through interaction with either thrombin or activated protein C, respectively.
Cathepsin L1 is a protein that in humans is encoded by the CTSL1 gene. The protein is a cysteine cathepsin, a lysosomal cysteine protease that plays a major role in intracellular protein catabolism.
Antileukoproteinase, also known as secretory leukocyte protease inhibitor (SLPI), is an enzyme that in humans is encoded by the SLPI gene. SLPI is a highly cationic single-chain protein with eight intramolecular disulfide bonds. It is found in large quantities in bronchial, cervical, and nasal mucosa, saliva, and seminal fluids. SLPI inhibits human leukocyte elastase, human cathepsin G, human trypsin, neutrophil elastase, and mast cell chymase. X-ray crystallography has shown that SLPI has two homologous domains of 53 and 54 amino acids, one of which exhibits anti-protease activity. The other domain is not known to have any function.
Cystatin-A is a protein that in humans is encoded by the CSTA gene.
Elafin, also known as peptidase inhibitor 3 or skin-derived antileukoprotease (SKALP), is a protein that in humans is encoded by the PI3 gene.
Azurocidin also known as cationic antimicrobial protein CAP37 or heparin-binding protein (HBP) is a protein that in humans is encoded by the AZU1 gene.
Lympho-epithelial Kazal-type-related inhibitor (LEKTI) also known as serine protease inhibitor Kazal-type 5 (SPINK5) is a protein that in humans is encoded by the SPINK5 gene.
Leukocyte elastase inhibitor (LEI) also known as serpin B1 is a protein that in humans is encoded by the SERPINB1 gene. It is a member of the clade B serpins or ov-serpins founded by ovalbumin.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.