Diffusion map

Last updated
Given non-uniformly sampled data points on a toroidal helix (top), the first two Diffusion Map coordinates with Laplace-Beltrami normalization are plotted (bottom). The Diffusion Map unravels the toroidal helix recovering the underlying intrinsic circular geometry of the data. Diffusion map of a torodial helix.jpg
Given non-uniformly sampled data points on a toroidal helix (top), the first two Diffusion Map coordinates with Laplace–Beltrami normalization are plotted (bottom). The Diffusion Map unravels the toroidal helix recovering the underlying intrinsic circular geometry of the data.

Diffusion maps is a dimensionality reduction or feature extraction algorithm introduced by Coifman and Lafon [1] [2] [3] [4] which computes a family of embeddings of a data set into Euclidean space (often low-dimensional) whose coordinates can be computed from the eigenvectors and eigenvalues of a diffusion operator on the data. The Euclidean distance between points in the embedded space is equal to the "diffusion distance" between probability distributions centered at those points. Different from linear dimensionality reduction methods such as principal component analysis (PCA), diffusion maps are part of the family of nonlinear dimensionality reduction methods which focus on discovering the underlying manifold that the data has been sampled from. By integrating local similarities at different scales, diffusion maps give a global description of the data-set. Compared with other methods, the diffusion map algorithm is robust to noise perturbation and computationally inexpensive.

Contents

Definition of diffusion maps

Following [3] and, [5] diffusion maps can be defined in four steps.

Connectivity

Diffusion maps exploit the relationship between heat diffusion and random walk Markov chain. The basic observation is that if we take a random walk on the data, walking to a nearby data-point is more likely than walking to another that is far away. Let be a measure space, where is the data set and represents the distribution of the points on .

Based on this, the connectivity between two data points, and , can be defined as the probability of walking from to in one step of the random walk. Usually, this probability is specified in terms of a kernel function of the two points: . For example, the popular Gaussian kernel:

More generally, the kernel function has the following properties

( is symmetric)

( is positivity preserving).

The kernel constitutes the prior definition of the local geometry of the data-set. Since a given kernel will capture a specific feature of the data set, its choice should be guided by the application that one has in mind. This is a major difference with methods such as principal component analysis, where correlations between all data points are taken into account at once.

Given , we can then construct a reversible discrete-time Markov chain on (a process known as the normalized graph Laplacian construction):

and define:

Although the new normalized kernel does not inherit the symmetric property, it does inherit the positivity-preserving property and gains a conservation property:

Diffusion process

From we can construct a transition matrix of a Markov chain () on . In other words, represents the one-step transition probability from to , and gives the t-step transition matrix.

We define the diffusion matrix (it is also a version of graph Laplacian matrix)

We then define the new kernel

or equivalently,

where D is a diagonal matrix and

We apply the graph Laplacian normalization to this new kernel:

where is a diagonal matrix and

One of the main ideas of the diffusion framework is that running the chain forward in time (taking larger and larger powers of ) reveals the geometric structure of at larger and larger scales (the diffusion process). Specifically, the notion of a cluster in the data set is quantified as a region in which the probability of escaping this region is low (within a certain time t). Therefore, t not only serves as a time parameter, but it also has the dual role of scale parameter.

The eigendecomposition of the matrix yields

where is the sequence of eigenvalues of and and are the biorthogonal right and left eigenvectors respectively. Due to the spectrum decay of the eigenvalues, only a few terms are necessary to achieve a given relative accuracy in this sum.

Parameter α and the diffusion operator

The reason to introduce the normalization step involving is to tune the influence of the data point density on the infinitesimal transition of the diffusion. In some applications, the sampling of the data is generally not related to the geometry of the manifold we are interested in describing. In this case, we can set and the diffusion operator approximates the Laplace–Beltrami operator. We then recover the Riemannian geometry of the data set regardless of the distribution of the points. To describe the long-term behavior of the point distribution of a system of stochastic differential equations, we can use and the resulting Markov chain approximates the Fokker–Planck diffusion. With , it reduces to the classical graph Laplacian normalization.

Diffusion distance

The diffusion distance at time between two points can be measured as the similarity of two points in the observation space with the connectivity between them. It is given by

where is the stationary distribution of the Markov chain, given by the first left eigenvector of . Explicitly:

Intuitively, is small if there is a large number of short paths connecting and . There are several interesting features associated with the diffusion distance, based on our previous discussion that also serves as a scale parameter:

  1. Points are closer at a given scale (as specified by ) if they are highly connected in the graph, therefore emphasizing the concept of a cluster.
  2. This distance is robust to noise, since the distance between two points depends on all possible paths of length between the points.
  3. From a machine learning point of view, the distance takes into account all evidences linking to , allowing us to conclude that this distance is appropriate for the design of inference algorithms based on the majority of preponderance. [3]

Diffusion process and low-dimensional embedding

The diffusion distance can be calculated using the eigenvectors by

So the eigenvectors can be used as a new set of coordinates for the data. The diffusion map is defined as:

Because of the spectrum decay, it is sufficient to use only the first k eigenvectors and eigenvalues. Thus we get the diffusion map from the original data to a k-dimensional space which is embedded in the original space.

In [6] it is proved that

so the Euclidean distance in the diffusion coordinates approximates the diffusion distance.

Algorithm

The basic algorithm framework of diffusion map is as:

Step 1. Given the similarity matrix L.

Step 2. Normalize the matrix according to parameter : .

Step 3. Form the normalized matrix .

Step 4. Compute the k largest eigenvalues of and the corresponding eigenvectors.

Step 5. Use diffusion map to get the embedding .

Application

In the paper [6] Nadler et al. showed how to design a kernel that reproduces the diffusion induced by a Fokker–Planck equation. They also explained that, when the data approximate a manifold, one can recover the geometry of this manifold by computing an approximation of the Laplace–Beltrami operator. This computation is completely insensitive to the distribution of the points and therefore provides a separation of the statistics and the geometry of the data. Since diffusion maps give a global description of the data-set, they can measure the distances between pairs of sample points in the manifold in which the data is embedded. Applications based on diffusion maps include face recognition, [7] spectral clustering, low dimensional representation of images, image segmentation, [8] 3D model segmentation, [9] speaker verification [10] and identification, [11] sampling on manifolds, anomaly detection, [12] [13] image inpainting, [14] revealing brain resting state networks organization [15] and so on.

Furthermore, the diffusion maps framework has been productively extended to complex networks, [16] revealing a functional organisation of networks which differs from the purely topological or structural one.

See also

Related Research Articles

<span class="mw-page-title-main">Quantum harmonic oscillator</span> Important, well-understood quantum mechanical model

The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics. Furthermore, it is one of the few quantum-mechanical systems for which an exact, analytical solution is known.

In machine learning, support vector machines are supervised max-margin models with associated learning algorithms that analyze data for classification and regression analysis. Developed at AT&T Bell Laboratories by Vladimir Vapnik with colleagues SVMs are one of the most studied models, being based on statistical learning frameworks or VC theory proposed by Vapnik and Chervonenkis (1974).

<span class="mw-page-title-main">Principal component analysis</span> Method of data analysis

Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.

<span class="mw-page-title-main">Differential operator</span> Typically linear operator defined in terms of differentiation of functions

In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function.

In mathematics, specifically functional analysis, Mercer's theorem is a representation of a symmetric positive-definite function on a square as a sum of a convergent sequence of product functions. This theorem, presented in, is one of the most notable results of the work of James Mercer (1883–1932). It is an important theoretical tool in the theory of integral equations; it is used in the Hilbert space theory of stochastic processes, for example the Karhunen–Loève theorem; and it is also used in the reproducing kernel Hilbert space theory where it characterizes a symmetric positive-definite kernel as a reproducing kernel.

<span class="mw-page-title-main">Nonlinear dimensionality reduction</span> Summary of algorithms for nonlinear dimensionality reduction

Nonlinear dimensionality reduction, also known as manifold learning, refers to various related techniques that aim to project high-dimensional data onto lower-dimensional latent manifolds, with the goal of either visualizing the data in the low-dimensional space, or learning the mapping itself. The techniques described below can be understood as generalizations of linear decomposition methods used for dimensionality reduction, such as singular value decomposition and principal component analysis.

In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.

Maximum Variance Unfolding (MVU), also known as Semidefinite Embedding (SDE), is an algorithm in computer science that uses semidefinite programming to perform non-linear dimensionality reduction of high-dimensional vectorial input data.

In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. The general task of pattern analysis is to find and study general types of relations in datasets. For many algorithms that solve these tasks, the data in raw representation have to be explicitly transformed into feature vector representations via a user-specified feature map: in contrast, kernel methods require only a user-specified kernel, i.e., a similarity function over all pairs of data points computed using inner products. The feature map in kernel machines is infinite dimensional but only requires a finite dimensional matrix from user-input according to the Representer theorem. Kernel machines are slow to compute for datasets larger than a couple of thousand examples without parallel processing.

In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments. By contrast, the study of general operators on infinite-dimensional spaces often requires a genuinely different approach.

In operator theory, a branch of mathematics, a positive-definite kernel is a generalization of a positive-definite function or a positive-definite matrix. It was first introduced by James Mercer in the early 20th century, in the context of solving integral operator equations. Since then, positive-definite functions and their various analogues and generalizations have arisen in diverse parts of mathematics. They occur naturally in Fourier analysis, probability theory, operator theory, complex function-theory, moment problems, integral equations, boundary-value problems for partial differential equations, machine learning, embedding problem, information theory, and other areas.

A kernel smoother is a statistical technique to estimate a real valued function as the weighted average of neighboring observed data. The weight is defined by the kernel, such that closer points are given higher weights. The estimated function is smooth, and the level of smoothness is set by a single parameter. Kernel smoothing is a type of weighted moving average.

Stochastic mechanics is a framework for describing the dynamics of particles that are subjected to an intrinsic random processes as well as various external forces. The framework provides a derivation of the diffusion equations associated to these stochastic particles. It is best known for its derivation of the Schrödinger equation as the Kolmogorov equation for a certain type of conservative diffusion, and for this purpose it is also referred to as stochastic quantum mechanics.

Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis. In this version one finds the solution by solving a set of linear equations instead of a convex quadratic programming (QP) problem for classical SVMs. Least-squares SVM classifiers were proposed by Johan Suykens and Joos Vandewalle. LS-SVMs are a class of kernel-based learning methods.

In statistics, kernel Fisher discriminant analysis (KFD), also known as generalized discriminant analysis and kernel discriminant analysis, is a kernelized version of linear discriminant analysis (LDA). It is named after Ronald Fisher.

A heat kernel signature (HKS) is a feature descriptor for use in deformable shape analysis and belongs to the group of spectral shape analysis methods. For each point in the shape, HKS defines its feature vector representing the point's local and global geometric properties. Applications include segmentation, classification, structure discovery, shape matching and shape retrieval.

Multiple kernel learning refers to a set of machine learning methods that use a predefined set of kernels and learn an optimal linear or non-linear combination of kernels as part of the algorithm. Reasons to use multiple kernel learning include a) the ability to select for an optimal kernel and parameters from a larger set of kernels, reducing bias due to kernel selection while allowing for more automated machine learning methods, and b) combining data from different sources that have different notions of similarity and thus require different kernels. Instead of creating a new kernel, multiple kernel algorithms can be used to combine kernels already established for each individual data source.

<span class="mw-page-title-main">Manifold regularization</span>

In machine learning, Manifold regularization is a technique for using the shape of a dataset to constrain the functions that should be learned on that dataset. In many machine learning problems, the data to be learned do not cover the entire input space. For example, a facial recognition system may not need to classify any possible image, but only the subset of images that contain faces. The technique of manifold learning assumes that the relevant subset of data comes from a manifold, a mathematical structure with useful properties. The technique also assumes that the function to be learned is smooth: data with different labels are not likely to be close together, and so the labeling function should not change quickly in areas where there are likely to be many data points. Because of this assumption, a manifold regularization algorithm can use unlabeled data to inform where the learned function is allowed to change quickly and where it is not, using an extension of the technique of Tikhonov regularization. Manifold regularization algorithms can extend supervised learning algorithms in semi-supervised learning and transductive learning settings, where unlabeled data are available. The technique has been used for applications including medical imaging, geographical imaging, and object recognition.

References

  1. Coifman, R.R.; Lafon, S; Lee, A B; Maggioni, M; Nadler, B; Warner, F; Zucker, S W (2005). "Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps". PNAS. 102 (21): 7426–7431. Bibcode:2005PNAS..102.7426C. doi: 10.1073/pnas.0500334102 . PMC   1140422 . PMID   15899970.
  2. Coifman, R.R.; Lafon, S; Lee, A B; Maggioni, M; Nadler, B; Warner, F; Zucker, S W (2005). "Geometric diffusions as a tool for harmonic analysis and structure definition of data: Multiscale methods". PNAS. 102 (21): 7432–7437. Bibcode:2005PNAS..102.7432C. doi: 10.1073/pnas.0500896102 . PMC   1140426 . PMID   15899969.
  3. 1 2 3 Coifman, R.R.; S. Lafon. (2006). "Diffusion maps". Applied and Computational Harmonic Analysis. 21: 5–30. doi:10.1016/j.acha.2006.04.006. S2CID   17160669.
  4. Lafon, S.S. (2004). Diffusion Maps and Geometric Harmonics (PDF) (PhD). Yale University.
  5. De la Porte, J.; Herbst, B M; Hereman, W; Van der Walt, S J (2008). "An Introduction to Diffusion Maps". Proceedings of the Nineteenth Annual Symposium of the Pattern Recognition Association of South Africa (PRASA). CiteSeerX   10.1.1.309.674 .
  6. 1 2 Nadler, Boaz; Stéphane Lafon; Ronald R. Coifman; Ioannis G. Kevrekidis (2005). "Diffusion Maps, Spectral Clustering and Eigenfunctions of Fokker–Planck Operators" (PDF). Advances in Neural Information Processing Systems. 18. arXiv: math/0506090 . Bibcode:2005math......6090N.
  7. Barkan, Oren; Weill, Jonathan; Wolf, Lior; Aronowitz, Hagai. "Fast high dimensional vector multiplication face recognition" (PDF). Proceedings of the IEEE International Conference on Computer Vision 2013: 1960–1967.
  8. Zeev, Farbman; Fattal Raanan; Lischinski Dani (2010). "Diffusion maps for edge-aware image editing". ACM Trans. Graph. 29 (6): 145:1–145:10. doi:10.1145/1882261.1866171.
  9. Oana, Sidi; van Kaick, Oliver; Kleiman, Yanir; Zhang, Hao; Cohen-Or, Daniel (2011). Unsupervised Co-Segmentation of a Set of Shapes via Descriptor-Space Spectral Clustering (PDF). ACM Transactions on Graphics.
  10. Barkan, Oren; Aronowitz, Hagai (2013). "Diffusion maps for PLDA-based speaker verification" (PDF). Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing: 7639–7643.
  11. Michalevsky, Yan; Talmon, Ronen; Cohen, Israel (2011). Speaker Identification Using Diffusion Maps (PDF). European signal processing conference 2011.
  12. Mishne, Gal; Cohen, Israel (2013). "Multiscale Anomaly Detection Using Diffusion Maps". IEEE Selected Topics in Signal Processing. 7 (1): 111–123. Bibcode:2013ISTSP...7..111M. doi:10.1109/jstsp.2012.2232279. S2CID   1954466.
  13. Shabat, Gil; Segev, David; Averbuch, Amir (2018-01-07). "Uncovering Unknown Unknowns in Financial Services Big Data by Unsupervised Methodologies: Present and Future trends". KDD 2017 Workshop on Anomaly Detection in Finance. 71: 8–19.
  14. Gepshtein, Shai; Keller, Yosi (2013). "Image Completion by Diffusion Maps and Spectral Relaxation". IEEE Transactions on Image Processing. 22 (8): 2983–2994. Bibcode:2013ITIP...22.2983G. doi:10.1109/tip.2013.2237916. PMID   23322762. S2CID   14375333.
  15. Margulies, Daniel S.; Ghosh, Satrajit S.; Goulas, Alexandros; Falkiewicz, Marcel; Huntenburg, Julia M.; Langs, Georg; Bezgin, Gleb; Eickhoff, Simon B.; Castellanos, F. Xavier; Petrides, Michael; Jefferies, Elizabeth; Smallwood, Jonathan (2016). "Situating the default-mode network along a principal gradient of macroscale cortical organization". Proceedings of the National Academy of Sciences. 113 (44): 12574–12579. Bibcode:2016PNAS..11312574M. doi: 10.1073/pnas.1608282113 . PMC   5098630 . PMID   27791099.
  16. De Domenico, Manlio (2017). "Diffusion geometry unravels the emergence of functional clusters in collective phenomena". Physical Review Letters. 118 (16): 168301. arXiv: 1704.07068 . Bibcode:2017PhRvL.118p8301D. doi:10.1103/PhysRevLett.118.168301. PMID   28474920. S2CID   2638868.