Discrete Chebyshev transform

Last updated

In applied mathematics, the discrete Chebyshev transform (DCT), named after Pafnuty Chebyshev, is either of two main varieties of DCTs: the discrete Chebyshev transform on the 'roots' grid of the Chebyshev polynomials of the first kind and the discrete Chebyshev transform on the 'extrema' grid of the Chebyshev polynomials of the first kind.

Contents

Discrete Chebyshev transform on the roots grid

The discrete chebyshev transform of u(x) at the points is given by:

where:

where and otherwise.

Using the definition of ,

and its inverse transform:

(This so happens to the standard Chebyshev series evaluated on the roots grid.)

This can readily be obtained by manipulating the input arguments to a discrete cosine transform.

This can be demonstrated using the following MATLAB code:

functiona=fct(f,l)% x =-cos(pi/N*((0:N-1)'+1/2));f=f(end:-1:1,:);A=size(f);N=A(1);ifexist('A(3)','var')&&A(3)~=1fori=1:A(3)a(:,:,i)=sqrt(2/N)*dct(f(:,:,i));a(1,:,i)=a(1,:,i)/sqrt(2);endelsea=sqrt(2/N)*dct(f(:,:,i));a(1,:)=a(1,:)/sqrt(2);end

The discrete cosine transform (dct) is in fact computed using a fast Fourier transform algorithm in MATLAB.

And the inverse transform is given by the MATLAB code:

functionf=ifct(a,l)% x = -cos(pi/N*((0:N-1)'+1/2)) k=size(a);N=k(1);a=idct(sqrt(N/2)*[a(1,:)*sqrt(2);a(2:end,:)]);end

Discrete Chebyshev transform on the extrema grid

This transform uses the grid:

This transform is more difficult to implement by use of a Fast Fourier Transform (FFT). However it is more widely used because it is on the extrema grid which tends to be most useful for boundary value problems. Mostly because it is easier to apply boundary conditions on this grid.

There is a discrete (and in fact fast because it performs the dct by using a fast Fourier transform) algorithm available at the MATLAB file exchange that was created by Greg von Winckel. So it is omitted here.

In this case the transform and its inverse are

where and otherwise.

Usage and implementations

The primary uses of the discrete Chebyshev transform are numerical integration, interpolation, and stable numerical differentiation. [1] An implementation which provides these features is given in the C++ library Boost. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Bessel function</span> Families of solutions to related differential equations

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation

<span class="mw-page-title-main">Discrete Fourier transform</span> Type of Fourier transform in discrete mathematics

In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence. An inverse DFT (IDFT) is a Fourier series, using the DTFT samples as coefficients of complex sinusoids at the corresponding DTFT frequencies. It has the same sample-values as the original input sequence. The DFT is therefore said to be a frequency domain representation of the original input sequence. If the original sequence spans all the non-zero values of a function, its DTFT is continuous, and the DFT provides discrete samples of one cycle. If the original sequence is one cycle of a periodic function, the DFT provides all the non-zero values of one DTFT cycle.

<span class="mw-page-title-main">Fourier series</span> Decomposition of periodic functions into sums of simpler sinusoidal forms

A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier series. By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This application is possible because the derivatives of trigonometric functions fall into simple patterns. Fourier series cannot be used to approximate arbitrary functions, because most functions have infinitely many terms in their Fourier series, and the series do not always converge. Well-behaved functions, for example smooth functions, have Fourier series that converge to the original function. The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric functions, described in Common forms of the Fourier series below.

A discrete cosine transform (DCT) expresses a finite sequence of data points in terms of a sum of cosine functions oscillating at different frequencies. The DCT, first proposed by Nasir Ahmed in 1972, is a widely used transformation technique in signal processing and data compression. It is used in most digital media, including digital images, digital video, digital audio, digital television, digital radio, and speech coding. DCTs are also important to numerous other applications in science and engineering, such as digital signal processing, telecommunication devices, reducing network bandwidth usage, and spectral methods for the numerical solution of partial differential equations.

<span class="mw-page-title-main">Root of unity</span> Number that has an integer power equal to 1

In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power n. Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group characters, and the discrete Fourier transform.

<span class="mw-page-title-main">Chebyshev polynomials</span> Polynomial sequence

The Chebyshev polynomials are two sequences of polynomials related to the cosine and sine functions, notated as and . They can be defined in several equivalent ways, one of which starts with trigonometric functions:

In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. A list of the spherical harmonics is available in Table of spherical harmonics.

<span class="mw-page-title-main">Window function</span> Function used in signal processing

In signal processing and statistics, a window function is a mathematical function that is zero-valued outside of some chosen interval, normally symmetric around the middle of the interval, usually approaching a maximum in the middle, and usually tapering away from the middle. Mathematically, when another function or waveform/data-sequence is "multiplied" by a window function, the product is also zero-valued outside the interval: all that is left is the part where they overlap, the "view through the window". Equivalently, and in actual practice, the segment of data within the window is first isolated, and then only that data is multiplied by the window function values. Thus, tapering, not segmentation, is the main purpose of window functions.

In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the base form

Chebyshev filters are analog or digital filters that have a steeper roll-off than Butterworth filters, and have either passband ripple or stopband ripple. Chebyshev filters have the property that they minimize the error between the idealized and the actual filter characteristic over the operating frequency range of the filter, but they achieve this with ripples in the passband. This type of filter is named after Pafnuty Chebyshev because its mathematical characteristics are derived from Chebyshev polynomials. Type I Chebyshev filters are usually referred to as "Chebyshev filters", while type II filters are usually called "inverse Chebyshev filters". Because of the passband ripple inherent in Chebyshev filters, filters with a smoother response in the passband but a more irregular response in the stopband are preferred for certain applications.

In mathematics, orthogonal functions belong to a function space that is a vector space equipped with a bilinear form. When the function space has an interval as the domain, the bilinear form may be the integral of the product of functions over the interval:

<span class="mw-page-title-main">Sinc function</span> Special mathematical function defined as sin(x)/x

In mathematics, physics and engineering, the sinc function, denoted by sinc(x), has two forms, normalized and unnormalized.

In mathematics, trigonometric interpolation is interpolation with trigonometric polynomials. Interpolation is the process of finding a function which goes through some given data points. For trigonometric interpolation, this function has to be a trigonometric polynomial, that is, a sum of sines and cosines of given periods. This form is especially suited for interpolation of periodic functions.

In mathematics, in the area of harmonic analysis, the fractional Fourier transform (FRFT) is a family of linear transformations generalizing the Fourier transform. It can be thought of as the Fourier transform to the n-th power, where n need not be an integer — thus, it can transform a function to any intermediate domain between time and frequency. Its applications range from filter design and signal analysis to phase retrieval and pattern recognition.

Clenshaw–Curtis quadrature and Fejér quadrature are methods for numerical integration, or "quadrature", that are based on an expansion of the integrand in terms of Chebyshev polynomials. Equivalently, they employ a change of variables and use a discrete cosine transform (DCT) approximation for the cosine series. Besides having fast-converging accuracy comparable to Gaussian quadrature rules, Clenshaw–Curtis quadrature naturally leads to nested quadrature rules, which is important for both adaptive quadrature and multidimensional quadrature (cubature).

In mathematics, the secondary measure associated with a measure of positive density ρ when there is one, is a measure of positive density μ, turning the secondary polynomials associated with the orthogonal polynomials for ρ into an orthogonal system.

In numerical analysis Chebyshev–Gauss quadrature is an extension of Gaussian quadrature method for approximating the value of integrals of the following kind:

Explicit formulas for eigenvalues and eigenvectors of the second derivative with different boundary conditions are provided both for the continuous and discrete cases. In the discrete case, the standard central difference approximation of the second derivative is used on a uniform grid.

The Mehler kernel is a complex-valued function found to be the propagator of the quantum harmonic oscillator.

References

  1. Trefethen, Lloyd (2013). Approximation Theory and Approximation Practice.
  2. Thompson, Nick; Maddock, John. "Chebyshev Polynomials". boost.org.