Disease resistance

Last updated
Sickle Cell genetic resistance to Malaria Sickle Cell genetic resistance to Malaria.jpg
Sickle Cell genetic resistance to Malaria

Disease resistance is the ability to prevent or reduce the presence of diseases in otherwise susceptible hosts. It can arise from genetic or environmental factors, such as incomplete penetrance. [2] Disease tolerance is different as it is the ability of a host to limit the impact of disease on host health.

Contents

In crops this includes plant disease resistance and can follow a gene-for-gene relationship.

Genetic Factors

Incomplete Penetrance

An example of a genetic factor causing disease resistance is incomplete penetrance. Incomplete penetrance is the result of a genetic mutation not fully manifesting as the associated trait or disease. In the combined case of sickle cell anemia and malaria, individuals with one normal allele and one sickle cell allele, (heterozygous HbAS), are largely healthy due to incomplete penetrance. [3] They do not experience the effects of having sickle cell anemia, (due to the incomplete nature of the mutation), and gain resistance to malaria. This is due to the altered shape of their red blood cells due to the partial sickle cell trait, which impedes the Plasmodium parasite, giving the individual resistance to the associated infection and disease caused by the parasite. [3]

Specific Genes

Certain genes themselves provide disease resistance by directly enhancing the immune response or directly inhibiting pathogens. For example, the Mx1 gene directly encodes a protein that blocks the replication of some viruses, such as influenza, providing natural resistance in certain organisms (like mice). [4] Similarly, Toll-like receptors (TLRs), which are naturally occurring proteins, are critical in recognizing pathogen-associated molecules, (including microbial and viral threats), and triggering immune responses. [5] Notably, variations or specific alleles in these genes can strengthen the body’s ability to combat infections, showing how genetic traits can further contribute to innate immunity and pathogen resistance.

Hemoglobinopathies

Hemoglobinopathies are a class of monogenic disorders that impact the major red blood cell protein hemoglobin. [6] Hemoglobinopathies interfere either with hemoglobin production or change hemoglobin’s protein structure, respectively splitting them into the two categories of thalassemias and structural variants [7] . These disorders exist due to alpha- or beta-globin gene mutations, [6] causing symptoms of moderate to severe anemia, organ damage, and reliance on blood transfusion for survival. Hemoglobinopathies provide an uncommon resistance against malarial infection, allowing an increased fitness of these mutations in regions where the mortality risk of malaria is high. [7]

Hormonal Immunity

Sex hormones, otherwise known as gonadal steroid hormones, play a role in regulating immune system functions through their modulation of disease resistance and immune responses. [8] Levels of type-1 interferon (IFN-I) cytokines involved in the stimulation of immune response and tumor necrosis factors (TNF) proteins involved in an inflammatory immune response can be altered by the introduction of testosterone hormones by individuals undergoing masculinizing gender-affirming treatment. [9] Interferons are synthesized by plasmacytoid dendritic cells (pDCs) which have toll-like receptors (TLR-7) that modulate their activity, so with the introduction of testosterone downregulating TLR-7 production in pDCs, interferons are consequently downregulated. [9] Testosterone reduces the impact of IFN-I responses in pDCs while increasing the intensity of pro-inflammatory pathways involving TNF. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Thalassemia</span> Family of inherited blood disorders

Thalassemias are inherited blood disorders that result in abnormal hemoglobin. Symptoms depend on the type of thalassemia and can vary from none to severe. Often there is mild to severe anemia as thalassemia can affect the production of red blood cells and also affect how long the red blood cells live. Symptoms of anemia include feeling tired and having pale skin. Other symptoms of thalassemia include bone problems, an enlarged spleen, yellowish skin, pulmonary hypertension, and dark urine. Slow growth may occur in children. Symptoms and presentations of thalassemia can change over time. Older terms included Cooley's anemia and Mediterranean anemia for beta-thalassemia. These have been superseded by the terms Transfusion-Dependent Thalassemia (TDT) and non-Transfusion-Dependent Thalassemia (NTDT). Patients with TDT require regular transfusions, typically every two to five weeks. TDTs include Beta-thalassemia major, nondeletional HbH disease, survived Hb Bart's disease, and severe HbE/beta-thalassemia.

A heterozygote advantage describes the case in which the heterozygous genotype has a higher relative fitness than either the homozygous dominant or homozygous recessive genotype. Loci exhibiting heterozygote advantage are a small minority of loci. The specific case of heterozygote advantage due to a single locus is known as overdominance. Overdominance is a rare condition in genetics where the phenotype of the heterozygote lies outside of the phenotypical range of both homozygote parents, and heterozygous individuals have a higher fitness than homozygous individuals.

<span class="mw-page-title-main">Pleiotropy</span> Influence of a single gene on multiple phenotypic traits

Pleiotropy occurs when one gene influences two or more seemingly unrelated phenotypic traits. Such a gene that exhibits multiple phenotypic expression is called a pleiotropic gene. Mutation in a pleiotropic gene may have an effect on several traits simultaneously, due to the gene coding for a product used by a myriad of cells or different targets that have the same signaling function.

<span class="mw-page-title-main">Hemoglobin A</span> Normal human hemoglobin in adults

Hemoglobin A (HbA), also known as adult hemoglobin, hemoglobin A1 or α2β2, is the most common human hemoglobin tetramer, accounting for over 97% of the total red blood cell hemoglobin. Hemoglobin is an oxygen-binding protein, found in erythrocytes, which transports oxygen from the lungs to the tissues. Hemoglobin A is the most common adult form of hemoglobin and exists as a tetramer containing two alpha subunits and two beta subunits (α2β2). Hemoglobin A2 (HbA2) is a less common adult form of hemoglobin and is composed of two alpha and two delta-globin subunits. This hemoglobin makes up 1-3% of hemoglobin in adults.

In genetics, expressivity is the degree to which a phenotype is expressed by individuals having a particular genotype. Alternatively, it may refer to the expression of a particular gene by individuals having a certain phenotype. Expressivity is related to the intensity of a given phenotype; it differs from penetrance, which refers to the proportion of individuals with a particular genotype that share the same phenotype.

<span class="mw-page-title-main">Cytotoxic T-lymphocyte associated protein 4</span> Mammalian protein found in humans

Cytotoxic T-lymphocyte associated protein 4, (CTLA-4) also known as CD152, is a protein receptor that functions as an immune checkpoint and downregulates immune responses. CTLA-4 is constitutively expressed in regulatory T cells but only upregulated in conventional T cells after activation – a phenomenon which is particularly notable in cancers. It acts as an "off" switch when bound to CD80 or CD86 on the surface of antigen-presenting cells. It is encoded by the gene CTLA4 in humans.

Hemoglobin C is an abnormal hemoglobin in which glutamic acid residue at the 6th position of the β-globin chain is replaced with a lysine residue due to a point mutation in the HBB gene. People with one copy of the gene for hemoglobin C do not experience symptoms, but can pass the abnormal gene on to their children. Those with two copies of the gene are said to have hemoglobin C disease and can experience mild anemia. It is possible for a person to have both the gene for hemoglobin S and the gene for hemoglobin C; this state is called hemoglobin SC disease, and is generally more severe than hemoglobin C disease, but milder than sickle cell anemia.

<span class="mw-page-title-main">Sickle cell trait</span> Medical condition

Sickle cell trait describes a condition in which a person has one abnormal allele of the hemoglobin beta gene, but does not display the severe symptoms of sickle cell disease that occur in a person who has two copies of that allele. Those who are heterozygous for the sickle cell allele produce both normal and abnormal hemoglobin.

<span class="mw-page-title-main">Interferon regulatory factors</span> Protein family

Interferon regulatory factors (IRF) are proteins which regulate transcription of interferons. Interferon regulatory factors contain a conserved N-terminal region of about 120 amino acids, which folds into a structure that binds specifically to the IRF-element (IRF-E) motifs, which is located upstream of the interferon genes. Some viruses have evolved defense mechanisms that regulate and interfere with IRF functions to escape the host immune system. For instance, the remaining parts of the interferon regulatory factor sequence vary depending on the precise function of the protein. The Kaposi sarcoma herpesvirus, KSHV, is a cancer virus that encodes four different IRF-like genes; including vIRF1, which is a transforming oncoprotein that inhibits type 1 interferon activity. In addition, the expression of IRF genes is under epigenetic regulation by promoter DNA methylation.

<span class="mw-page-title-main">Hemoglobin subunit beta</span> Mammalian protein found in Homo sapiens

Hemoglobin subunit beta is a globin protein, coded for by the HBB gene, which along with alpha globin (HBA), makes up the most common form of haemoglobin in adult humans, hemoglobin A (HbA). It is 147 amino acids long and has a molecular weight of 15,867 Da. Normal adult human HbA is a heterotetramer consisting of two alpha chains and two beta chains.

In medical genetics, compound heterozygosity is the condition of having two or more heterogeneous recessive alleles at a particular locus that can cause genetic disease in a heterozygous state; that is, an organism is a compound heterozygote when it has two recessive alleles for the same gene, but with those two alleles being different from each other. Compound heterozygosity reflects the diversity of the mutation base for many autosomal recessive genetic disorders; mutations in most disease-causing genes have arisen many times. This means that many cases of disease arise in individuals who have two unrelated alleles, who technically are heterozygotes, but both the alleles are defective.

<span class="mw-page-title-main">STAT1</span> Transcription factor and coding gene in humans

Signal transducer and activator of transcription 1 (STAT1) is a transcription factor which in humans is encoded by the STAT1 gene. It is a member of the STAT protein family.

<span class="mw-page-title-main">Antagonistic pleiotropy hypothesis</span> Proposed evolutionary explanation for senescence

The antagonistic pleiotropy hypothesis (APT) is a theory in evolutionary biology that suggests certain genes may confer beneficial effects early in an organism's life, enhancing reproductive success, while also causing detrimental effects later in life, contributing to the aging process.

"Sickle Cell Anemia, a Molecular Disease" is a 1949 scientific paper by Linus Pauling, Harvey A. Itano, Seymour J. Singer and Ibert C. Wells that established sickle-cell anemia as a genetic disease in which affected individuals have a different form of the metalloprotein hemoglobin in their blood. The paper, published in the November 25, 1949 issue of Science, reports a difference in electrophoretic mobility between hemoglobin from healthy individuals and those with sickle-cell anemia, with those with sickle cell trait having a mixture of the two types. The paper suggests that the difference in electrophoretic mobility is probably due to a different number of ionizable amino acid residues in the protein portion of hemoglobin, and that this change in molecular structure is responsible for the sickling process. It also reports the genetic basis for the disease, consistent with the simultaneous genealogical study by James V. Neel: those with sickle-cell anemia are homozygous for the disease gene, while heterozygous individuals exhibit the usually asymptomatic condition of sickle cell trait.

<span class="mw-page-title-main">Sickle cell disease</span> Medical condition

Sickle cell disease (SCD), also simply called sickle cell, is a group of hemoglobin-related blood disorders that are typically inherited. The most common type is known as sickle cell anemia. Sickle cell anemia results in an abnormality in the oxygen-carrying protein haemoglobin found in red blood cells. This leads to the red blood cells adopting an abnormal sickle-like shape under certain circumstances; with this shape, they are unable to deform as they pass through capillaries, causing blockages. Problems in sickle cell disease typically begin around 5 to 6 months of age. A number of health problems may develop, such as attacks of pain in joints, anemia, swelling in the hands and feet, bacterial infections, dizziness and stroke. The probability of severe symptoms, including long-term pain, increases with age. Without treatment, people with SCD rarely reach adulthood but with good healthcare, median life expectancy is between 58 and 66 years. All the major organs are affected by sickle cell disease. The liver, heart, kidneys, gallbladder, eyes, bones, and joints also can suffer damage from the abnormal functions of the sickle cells, and their inability to flow through the small blood vessels correctly.

Human genetic resistance to malaria refers to inherited changes in the DNA of humans which increase resistance to malaria and result in increased survival of individuals with those genetic changes. The existence of these genotypes is likely due to evolutionary pressure exerted by parasites of the genus Plasmodium which cause malaria. Since malaria infects red blood cells, these genetic changes are most common alterations to molecules essential for red blood cell function, such as hemoglobin or other cellular proteins or enzymes of red blood cells. These alterations generally protect red blood cells from invasion by Plasmodium parasites or replication of parasites within the red blood cell.

Host–parasite coevolution is a special case of coevolution, where a host and a parasite continually adapt to each other. This can create an evolutionary arms race between them. A more benign possibility is of an evolutionary trade-off between transmission and virulence in the parasite, as if it kills its host too quickly, the parasite will not be able to reproduce either. Another theory, the Red Queen hypothesis, proposes that since both host and parasite have to keep on evolving to keep up with each other, and since sexual reproduction continually creates new combinations of genes, parasitism favours sexual reproduction in the host.

Hemoglobin H disease, also called alpha-thalassemia intermedia, is a disease affecting hemoglobin, the oxygen carrying molecule within red blood cells. It is a form of Alpha-thalassemia which most commonly occurs due to deletion of 3 out of 4 of the α-globin genes.

<span class="mw-page-title-main">Genetic history of the African diaspora</span>

The genetic history of the African diaspora is composed of the overall genetic history of the African diaspora, within regions outside of Africa, such as North America, Central America, the Caribbean, South America, Europe, Asia, and Australia; this includes the genetic histories of African Americans, Afro-Canadians, Afro-Caribbeans, Afro-Latinos, Afro-Europeans, Afro-Asians, and African Australians.

Hemoglobin D (HbD) is a variant of hemoglobin, a protein complex that makes up red blood cells. Based on the locations of the original identification, it has been known by several names such as hemoglobin D-Los Angeles, hemoglobin D-Punjab, D-North Carolina, D-Portugal, D-Oak Ridge, and D-Chicago. Hemoglobin D-Los Angeles was the first type identified by Harvey Itano in 1951, and was subsequently discovered that hemoglobin D-Punjab is the most abundant type that is common in the Sikhs of Punjab and of Gujarat.

References

  1. Burt, Benjamin (June 3, 2016). "Sickle Cell genetic resistance to Malaria". Wikimedia Commons. Retrieved December 3, 2024.
  2. MacArthur, Daniel (May 2016). "Superheroes of disease resistance". Nature Biotechnology. 34 (5): 512–513. doi:10.1038/nbt.3555. ISSN   1546-1696. PMID   27065009.
  3. 1 2 Uyoga, Sophie; Olupot-Olupot, Peter; Connon, Roisin; Kiguli, Sarah; Opoka, Robert O; Alaroker, Florence; Muhindo, Rita; Macharia, Alexander W; Dondorp, Arjen M; Gibb, Diana M; Walker, A Sarah; George, Elizabeth C; Maitland, Kathryn; Williams, Thomas N (September 2022). "Sickle cell anaemia and severe Plasmodium falciparum malaria: a secondary analysis of the Transfusion and Treatment of African Children Trial (TRACT)". The Lancet Child & Adolescent Health. 6 (9): 606–613. doi:10.1016/S2352-4642(22)00153-5. PMC   7613576 . PMID   35785794.
  4. Müller, M.; Brem, G. (September 1991). "Disease resistance in farm animals". Experientia. 47 (9): 923–934. doi:10.1007/BF01929883. ISSN   0014-4754. PMID   1915776.
  5. Novák, Karel (January 2014). "Functional polymorphisms in Toll-like receptor genes for innate immunity in farm animals". Veterinary Immunology and Immunopathology. 157 (1–2): 1–11. doi:10.1016/j.vetimm.2013.10.016. PMID   24268689.
  6. 1 2 Lee, Young Kyung; Kim, Hee-Jin; Lee, Kyunghoon; Park, Sang Hyuk; Song, Sang Hoon; Seong, Moon-Woo; Kim, Myungshin; Han, Jin Yeong (2019-03-31). "Recent progress in laboratory diagnosis of thalassemia and hemoglobinopathy: a study by the Korean Red Blood Cell Disorder Working Party of the Korean Society of Hematology". Blood Research. 54 (1): 17–22. doi:10.5045/br.2019.54.1.17. ISSN   2287-979X. PMC   6439293 . PMID   30956959.
  7. 1 2 Kohne, Elisabeth (2011-08-08). "Hemoglobinopathies". Deutsches Ärzteblatt International. 108 (31–32): 532–540. doi:10.3238/arztebl.2011.0532. ISSN   1866-0452. PMC   3163784 . PMID   21886666.
  8. Foo, Yong Zhi; Nakagawa, Shinichi; Rhodes, Gillian; Simmons, Leigh W. (2017). "The effects of sex hormones on immune function: a meta-analysis". Biological Reviews. 92 (1): 551–571. doi:10.1111/brv.12243. ISSN   1469-185X.
  9. 1 2 3 Lakshmikanth, Tadepally; Consiglio, Camila; Sardh, Fabian; Forlin, Rikard; Wang, Jun; Tan, Ziyang; Barcenilla, Hugo; Rodriguez, Lucie; Sugrue, Jamie; Noori, Peri; Ivanchenko, Margarita; Piñero Páez, Laura; Gonzalez, Laura; Habimana Mugabo, Constantin; Johnsson, Anette (September 26, 2024). "Author Correction: Immune system adaptation during gender-affirming testosterone treatment". Nature . 634 (8033): E5–E5. doi:10.1038/s41586-024-08081-w. ISSN   1476-4687. PMC   11464365 . PMID   39317781.