Displacement measurement

Last updated

Displacement measurement is the measurement of changes in directed distance (displacement). Devices measuring displacement are based on displacement sensors, which can be contacting or non-contacting. [1] Some displacement sensors are based on displacement transducers, [2] devices which convert displacement into another form of energy. [3]

Contents

Displacement sensors can be used to indirectly measure a number of other quantities, including deformation, distortion, thermal expansion, thickness (normally through the combination of two sensors), vibration, spindle motion, fluid level, strain and mechanical shock. [1]

Displacement sensors exist that can measure displacement on the order of nanometers or smaller. [1]

Application

Displacement receivers can be used to study and observe the stress waves passing through a material after it is struck. [4] This can be used to assess fire damage to reinforced concrete. [4]

Displacement transducers are often used to measure vibration. [5]

Types

Optical displacement sensors exist, using reflected light to determine distance. [6]

An ultrasonic displacement sensor is a kind of displacement sensor. [6] These measure the distance to targets by emitting low-frequency sound waves and measuring the time they take to return. [6]

Displacement sensors can be made using linear variable differential transformers. [6]

Strain gauges can be used as the base for small displacement transducers on the order of 0 to 10 mm. [7]

In music, certain music keyboards can be considered to measure displacement in the sense that they respond to displacement, rather than velocity (as is more commonly the case).[ citation needed ]

Examples of displacement-responding sensors include the mechanical action of tracker organs, as well as the force-sensing resistors found in music keyboards that had polyphonic aftertouch capability. Polyphonic aftertouch is no longer a feature of presently manufactured keyboards, but certain older models such as the Roland A50 featured a pressure sensing resistor, similar in principle-of-operation to a carbon microphone, in each key.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Pressure measurement</span>

Pressure measurement is the measurement of an applied force by a fluid on a surface. Pressure is typically measured in units of force per unit of surface area. Many techniques have been developed for the measurement of pressure and vacuum. Instruments used to measure and display pressure mechanically are called pressure gauges,vacuum gauges or compound gauges. The widely used Bourdon gauge is a mechanical device, which both measures and indicates and is probably the best known type of gauge.

<span class="mw-page-title-main">Data acquisition</span> Process of sampling signals from sensors and converting into digital data

Data acquisition is the process of sampling signals that measure real-world physical conditions and converting the resulting samples into digital numeric values that can be manipulated by a computer. Data acquisition systems, abbreviated by the acronyms DAS,DAQ, or DAU, typically convert analog waveforms into digital values for processing. The components of data acquisition systems include:

<span class="mw-page-title-main">Sensor</span> Converter that measures a physical quantity and converts it into a signal

A sensor is a device that produces an output signal for the purpose of detecting a physical phenomenon.

A transducer is a device that converts energy from one form to another. Usually a transducer converts a signal in one form of energy to a signal in another. Transducers are often employed at the boundaries of automation, measurement, and control systems, where electrical signals are converted to and from other physical quantities. The process of converting one form of energy to another is known as transduction.

<span class="mw-page-title-main">Strain gauge</span> Electronic component used to measure strain

A strain gauge is a device used to measure strain on an object. Invented by Edward E. Simmons and Arthur C. Ruge in 1938, the most common type of strain gauge consists of an insulating flexible backing which supports a metallic foil pattern. The gauge is attached to the object by a suitable adhesive, such as cyanoacrylate. As the object is deformed, the foil is deformed, causing its electrical resistance to change. This resistance change, usually measured using a Wheatstone bridge, is related to the strain by the quantity known as the gauge factor.

<span class="mw-page-title-main">Linear variable differential transformer</span> Type of electrical transformer

The linear variable differential transformer (LVDT) – also called linear variable displacement transformer, linear variable displacement transducer, or simply differential transformer – is a type of electrical transformer used for measuring linear displacement. It is the base of LVDT-type displacement sensors. A counterpart to this device that is used for measuring rotary displacement is called a rotary variable differential transformer (RVDT).

Resistance thermometers, also called resistance temperature detectors (RTDs), are sensors used to measure temperature. Many RTD elements consist of a length of fine wire wrapped around a heat-resistant ceramic or glass core but other constructions are also used. The RTD wire is a pure material, typically platinum (Pt), nickel (Ni), or copper (Cu). The material has an accurate resistance/temperature relationship which is used to provide an indication of temperature. As RTD elements are fragile, they are often housed in protective probes.

Keyboard expression is the ability of a keyboard musical instrument to change tone or other qualities of the sound in response to velocity, pressure or other variations in how the performer depresses the keys of the musical keyboard. Expression types include:

load cell converts a force such as tension, compression, pressure, or torque into a signal that can be measured and standardized. It is a force transducer. As the force applied to the load cell increases, the signal changes proportionally. The most common types of load cells are pneumatic, hydraulic, and strain gauge types for industrial applications. Typical non-electronic bathroom scales are a widespread example of a mechanical displacement indicator where the applied weight (force) is indicated by measuring the deflection of springs supporting the load platform, technically a "load cell".

<span class="mw-page-title-main">Rheometer</span> Scientific instrument used to measure fluid flow (rheology)

A rheometer is a laboratory device used to measure the way in which a viscous fluid flows in response to applied forces. It is used for those fluids which cannot be defined by a single value of viscosity and therefore require more parameters to be set and measured than is the case for a viscometer. It measures the rheology of the fluid.

<span class="mw-page-title-main">Piezoelectric sensor</span> Type of sensor

A piezoelectric sensor is a device that uses the piezoelectric effect to measure changes in pressure, acceleration, temperature, strain, or force by converting them to an electrical charge. The prefix piezo- is Greek for 'press' or 'squeeze'.

Level sensors detect the level of liquids and other fluids and fluidized solids, including slurries, granular materials, and powders that exhibit an upper free surface. Substances that flow become essentially horizontal in their containers because of gravity whereas most bulk solids pile at an angle of repose to a peak. The substance to be measured can be inside a container or can be in its natural form. The level measurement can be either continuous or point values. Continuous level sensors measure level within a specified range and determine the exact amount of substance in a certain place, while point-level sensors only indicate whether the substance is above or below the sensing point. Generally the latter detect levels that are excessively high or low.

<span class="mw-page-title-main">Ultrasonic transducer</span> Acoustic sensor

Ultrasonic transducers and ultrasonic sensors are devices that generate or sense ultrasound energy. They can be divided into three broad categories: transmitters, receivers and transceivers. Transmitters convert electrical signals into ultrasound, receivers convert ultrasound into electrical signals, and transceivers can both transmit and receive ultrasound.

A string potentiometer is a transducer used to detect and measure linear position and velocity using a flexible cable and spring-loaded spool. Other common names include string pot, cable-extension transducer, draw wire sensor, and yo-yo sensor.

<span class="mw-page-title-main">Piezoelectric accelerometer</span> Type of accelerometer

A piezoelectric accelerometer is an accelerometer that employs the piezoelectric effect of certain materials to measure dynamic changes in mechanical variables.

<span class="mw-page-title-main">MEMS magnetic field sensor</span>

A MEMSmagnetic field sensor is a small-scale microelectromechanical systems (MEMS) device for detecting and measuring magnetic fields (magnetometer). Many of these operate by detecting effects of the Lorentz force: a change in voltage or resonant frequency may be measured electronically, or a mechanical displacement may be measured optically. Compensation for temperature effects is necessary. Its use as a miniaturized compass may be one such simple example application.

Small arms ammunition pressure testing is used to establish standards for maximum average peak pressures of chamberings, as well as determining the safety of particular loads for the purposes of new load development. In metallic cartridges, peak pressure can vary based on propellant used, primers used, charge weight, projectile type, projectile seating depth, neck tension, chamber throat/lead parameters. In shotshells, the primary factors are charge weight, projectile weight, wad type, hull construction, and crimp quality.

<span class="mw-page-title-main">Robotic sensors</span> Mechanical sensors, often based on human senses

Robotic sensors are used to estimate a robot's condition and environment. These signals are passed to a controller to enable appropriate behavior.

<span class="mw-page-title-main">Current sensing</span>

In electrical engineering, current sensing is any one of several techniques used to measure electric current. The measurement of current ranges from picoamps to tens of thousands of amperes. The selection of a current sensing method depends on requirements such as magnitude, accuracy, bandwidth, robustness, cost, isolation or size. The current value may be directly displayed by an instrument, or converted to digital form for use by a monitoring or control system.

Bioinstrumentation or biomedical instrumentation is an application of biomedical engineering which focuses on development of devices and mechanics used to measure, evaluate, and treat biological systems. The goal of biomedical instrumentation focuses on the use of multiple sensors to monitor physiological characteristics of a human or animal for diagnostic and disease treatment purposes. Such instrumentation originated as a necessity to constantly monitor vital signs of Astronauts during NASA's Mercury, Gemini, and Apollo missions.

References

  1. 1 2 3 Leach, Richard (2014-01-01), Leach, Richard (ed.), "Chapter 5 - Displacement Measurement", Fundamental Principles of Engineering Nanometrology (Second Edition), Micro and Nano Technologies, Oxford: William Andrew Publishing, pp. 95–132, ISBN   978-1-4557-7753-2 , retrieved 2024-12-04, At the heart of all instruments that measure a change in length, or coordinates, are displacement sensors. ... Displacement sensors can be contacting or non-contacting, and often can be configured to measure velocity and acceleration.
  2. Mendelson, Yitzhak (2012-01-01), Enderle, John D.; Bronzino, Joseph D. (eds.), "Chapter 10 - Biomedical Sensors", Introduction to Biomedical Engineering (Third Edition), Biomedical Engineering, Boston: Academic Press, pp. 609–666, ISBN   978-0-12-374979-6 , retrieved 2024-12-04, Displacement transducers are typically used to measure physical changes in the position of an object or medium.
  3. "transducer". Merriam-Webster.com Dictionary . Merriam-Webster.
  4. 1 2 Hsu, K., Cheng, C., Hsu, S., & Yu, P. (2022). Rapid assessment of fire damage to reinforced concrete structures using the surface wave method with contact and non-contact receivers. International Symposium on Non-Destructive Testing in Civil Engineering (NDT-CE 2022), 16-18 August 2022, Zurich, Switzerland. e-Journal of Nondestructive Testing Vol. 27(9). https://doi.org/10.58286/27289
  5. Cheatle, Keith (2006). "4.4: Displacement Transducers". Fundamentals of Test Measurement Instrumentation. ISA--Instrumentation, Systems, and Automation Society. ISBN   978-1-55617-914-3.. Excerpt accessed through GlobalSpec
  6. 1 2 3 4 Paul, Sudip; Saikia, Angana; Majhi, Vinayak; Pandey, Vinay Kumar (2022-01-01), Paul, Sudip; Saikia, Angana; Majhi, Vinayak; Pandey, Vinay Kumar (eds.), "Chapter 3 - Transducers and amplifiers", Introduction to Biomedical Instrumentation and Its Applications, Academic Press, pp. 87–167, ISBN   978-0-12-821674-3 , retrieved 2024-11-30
  7. Chatterjee, Karunamoy; Mahato, Sankar Narayan; Chattopadhyay, Subrata; De, Dhananjoy (2017-01-01). "High accuracy displacement measuring system using strain gauge based displacement sensor and direct sequence spread spectrum techniques in data acquisition system". Instruments and Experimental Techniques. 60 (1): 154–157. doi:10.1134/S0020441217010055. ISSN   1608-3180.