Distortion risk measure

Last updated

In financial mathematics and economics, a distortion risk measure is a type of risk measure which is related to the cumulative distribution function of the return of a financial portfolio.

Contents

Mathematical definition

The function associated with the distortion function is a distortion risk measure if for any random variable of gains (where is the Lp space) then

where is the cumulative distribution function for and is the dual distortion function . [1]

If almost surely then is given by the Choquet integral, i.e. [1] [2] Equivalently, [2] such that is the probability measure generated by , i.e. for any the sigma-algebra then . [3]

Properties

In addition to the properties of general risk measures, distortion risk measures also have:

  1. Law invariant: If the distribution of and are the same then .
  2. Monotone with respect to first order stochastic dominance.
    1. If is a concave distortion function, then is monotone with respect to second order stochastic dominance.
  3. is a concave distortion function if and only if is a coherent risk measure. [1] [2]

Examples

See also

Related Research Articles

Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.

The Liouville Lambda function, denoted by λ(n) and named after Joseph Liouville, is an important arithmetic function. Its value is +1 if n is the product of an even number of prime numbers, and −1 if it is the product of an odd number of primes.

In mathematics, more specifically in harmonic analysis, Walsh functions form a complete orthogonal set of functions that can be used to represent any discrete function—just like trigonometric functions can be used to represent any continuous function in Fourier analysis. They can thus be viewed as a discrete, digital counterpart of the continuous, analog system of trigonometric functions on the unit interval. But unlike the sine and cosine functions, which are continuous, Walsh functions are piecewise constant. They take the values −1 and +1 only, on sub-intervals defined by dyadic fractions.

In quantum mechanics, information theory, and Fourier analysis, the entropic uncertainty or Hirschman uncertainty is defined as the sum of the temporal and spectral Shannon entropies. It turns out that Heisenberg's uncertainty principle can be expressed as a lower bound on the sum of these entropies. This is stronger than the usual statement of the uncertainty principle in terms of the product of standard deviations.

<span class="mw-page-title-main">Mixing (mathematics)</span>

In mathematics, mixing is an abstract concept originating from physics: the attempt to describe the irreversible thermodynamic process of mixing in the everyday world: mixing paint, mixing drinks, industrial mixing, etc.

Time consistency in the context of finance is the property of not having mutually contradictory evaluations of risk at different points in time. This property implies that if investment A is considered riskier than B at some future time, then A will also be considered riskier than B at every prior time.

<span class="mw-page-title-main">Stability radius</span> Concept in mathematics

In mathematics, the stability radius of an object at a given nominal point is the radius of the largest ball, centered at the nominal point, all of whose elements satisfy pre-determined stability conditions. The picture of this intuitive notion is this:

<span class="mw-page-title-main">Multiple integral</span> Generalization of definite integrals to functions of multiple variables

In mathematics, a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z). Integrals of a function of two variables over a region in are called double integrals, and integrals of a function of three variables over a region in are called triple integrals. For multiple integrals of a single-variable function, see the Cauchy formula for repeated integration.

In mathematics, the (linear) Peetre theorem, named after Jaak Peetre, is a result of functional analysis that gives a characterisation of differential operators in terms of their effect on generalized function spaces, and without mentioning differentiation in explicit terms. The Peetre theorem is an example of a finite order theorem in which a function or a functor, defined in a very general way, can in fact be shown to be a polynomial because of some extraneous condition or symmetry imposed upon it.

Stochastic dominance is a partial order between random variables. It is a form of stochastic ordering. The concept arises in decision theory and decision analysis in situations where one gamble can be ranked as superior to another gamble for a broad class of decision-makers. It is based on shared preferences regarding sets of possible outcomes and their associated probabilities. Only limited knowledge of preferences is required for determining dominance. Risk aversion is a factor only in second order stochastic dominance.

In mathematics, a π-system on a set is a collection of certain subsets of such that

In the fields of actuarial science and financial economics there are a number of ways that risk can be defined; to clarify the concept theoreticians have described a number of properties that a risk measure might or might not have. A coherent risk measure is a function that satisfies properties of monotonicity, sub-additivity, homogeneity, and translational invariance.

A Choquet integral is a subadditive or superadditive integral created by the French mathematician Gustave Choquet in 1953. It was initially used in statistical mechanics and potential theory, but found its way into decision theory in the 1980s, where it is used as a way of measuring the expected utility of an uncertain event. It is applied specifically to membership functions and capacities. In imprecise probability theory, the Choquet integral is also used to calculate the lower expectation induced by a 2-monotone lower probability, or the upper expectation induced by a 2-alternating upper probability.

In financial mathematics, a risk measure is used to determine the amount of an asset or set of assets to be kept in reserve. The purpose of this reserve is to make the risks taken by financial institutions, such as banks and insurance companies, acceptable to the regulator. In recent years attention has turned towards convex and coherent risk measurement.

A Spectral risk measure is a risk measure given as a weighted average of outcomes where bad outcomes are, typically, included with larger weights. A spectral risk measure is a function of portfolio returns and outputs the amount of the numeraire to be kept in reserve. A spectral risk measure is always a coherent risk measure, but the converse does not always hold. An advantage of spectral measures is the way in which they can be related to risk aversion, and particularly to a utility function, through the weights given to the possible portfolio returns.

In probability theory and statistics, a stochastic order quantifies the concept of one random variable being "bigger" than another. These are usually partial orders, so that one random variable may be neither stochastically greater than, less than nor equal to another random variable . Many different orders exist, which have different applications.

In financial mathematics, a conditional risk measure is a random variable of the financial risk as if measured at some point in the future. A risk measure can be thought of as a conditional risk measure on the trivial sigma algebra.

A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product is a product distribution.

In financial mathematics and stochastic optimization, the concept of risk measure is used to quantify the risk involved in a random outcome or risk position. Many risk measures have hitherto been proposed, each having certain characteristics. The entropic value at risk (EVaR) is a coherent risk measure introduced by Ahmadi-Javid, which is an upper bound for the value at risk (VaR) and the conditional value at risk (CVaR), obtained from the Chernoff inequality. The EVaR can also be represented by using the concept of relative entropy. Because of its connection with the VaR and the relative entropy, this risk measure is called "entropic value at risk". The EVaR was developed to tackle some computational inefficiencies of the CVaR. Getting inspiration from the dual representation of the EVaR, Ahmadi-Javid developed a wide class of coherent risk measures, called g-entropic risk measures. Both the CVaR and the EVaR are members of this class.

In mathematics, Katugampola fractional operators are integral operators that generalize the Riemann–Liouville and the Hadamard fractional operators into a unique form. The Katugampola fractional integral generalizes both the Riemann–Liouville fractional integral and the Hadamard fractional integral into a single form and It is also closely related to the Erdelyi–Kober operator that generalizes the Riemann–Liouville fractional integral. Katugampola fractional derivative has been defined using the Katugampola fractional integral and as with any other fractional differential operator, it also extends the possibility of taking real number powers or complex number powers of the integral and differential operators.

References

  1. 1 2 3 4 Sereda, E. N.; Bronshtein, E. M.; Rachev, S. T.; Fabozzi, F. J.; Sun, W.; Stoyanov, S. V. (2010). "Distortion Risk Measures in Portfolio Optimization". Handbook of Portfolio Construction. p. 649. CiteSeerX   10.1.1.316.1053 . doi:10.1007/978-0-387-77439-8_25. ISBN   978-0-387-77438-1.
  2. 1 2 3 4 5 Julia L. Wirch; Mary R. Hardy. "Distortion Risk Measures: Coherence and Stochastic Dominance" (PDF). Archived from the original (PDF) on July 5, 2016. Retrieved March 10, 2012.
  3. 1 2 3 Balbás, A.; Garrido, J.; Mayoral, S. (2008). "Properties of Distortion Risk Measures". Methodology and Computing in Applied Probability. 11 (3): 385. doi:10.1007/s11009-008-9089-z. hdl: 10016/14071 . S2CID   53327887.