Doctor sweetening process

Last updated
Doctor Sweetening Process; version as patented by Kalinowsky (1954) DoctorSweeteningProcess-Kalinowsky.jpg
Doctor Sweetening Process; version as patented by Kalinowsky (1954)

The doctor sweetening process is an industrial chemical process for converting mercaptans in sour gasoline into disulfides. Sulfur compounds darken gasoline, give it an offensive odor and increase toxic sulfur dioxide engine emissions. [1] However, this process only reduces the odor.

Contents

These sulfur compounds can be removed with the following chemical reactions: [2]

Chemistry of the process

The chemistry of 'doctor sweetening' was described in detail by G. Wendt and S. Diggs in 1924. They also showed that the lead oxide solution brought about oxidation of the mercaptans to the corresponding organic disulfides, which are comparatively odourless. Lead oxide (litharge) dissolves in reasonably concentrated solutions of sodium hydroxide or potassium hydroxide owing to formation of a soluble compound, sodium plumbite:

When this alkaline solution is agitated with petroleum, the two liquids do not dissolve in one another, but any mercaptan in the oil will unite with an equivalent amount of the lead (which then passes into the petroleum) to form what is called a lead mercaptide, soluble in the oil:

If the mixture is now treated with powdered sulfur, which has a high affinity for lead, a black suspension of lead sulfide forms, and conversion of the mercaptide into a so-called disulfide (which remains in the oil) is induced:

With no sulfur added, but in the presence of atmospheric oxygen, the same conversion occurs, but only slowly, and probably not completely:

It is evident that the process does not remove the sulfur from the oil but even may increase the sulfur content if too much powdered sulfur is added, and some of the lead may remain in the petroleum.

The described chemistry is also the basis of the doctor test for the sweetness or sourness of gasoline (i.e., the extent of sulfur contamination). A gasoline is described as doctor sweet if, after shaking with sodium plumbite solutions, the addition of powdered sulfur fails to produce a dark precipitate of lead sulfide.

Literature

Related Research Articles

Chemical reaction Process that results in the interconversion of chemical species

A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the positions of electrons in the forming and breaking of chemical bonds between atoms, with no change to the nuclei, and can often be described by a chemical equation. Nuclear chemistry is a sub-discipline of chemistry that involves the chemical reactions of unstable and radioactive elements where both electronic and nuclear changes can occur.

Sulfuric acid Chemical compound

Sulfuric acid or sulphuric acid, known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen and hydrogen, with the molecular formula H2SO4. It is a colorless, odorless and viscous liquid that is miscible with water.

In biochemistry, a disulfide refers to a functional group with the structure R−S−S−R′. The linkage is also called an SS-bond or sometimes a disulfide bridge and is usually derived by the coupling of two thiol groups. In biology, disulfide bridges formed between thiol groups in two cysteine residues are an important component of the secondary and tertiary structure of proteins. Persulfide usually refers to R−S−S−H compounds.

Thiol Any organic compound having a sulfanyl group

A thiol or thiol derivative is any organosulfur compound of the form R−SH, where R represents an alkyl or other organic substituent. The –SH functional group itself is referred to as either a thiol group or a sulfhydryl group, or a sulfanyl group. Thiols are the sulfur analogue of alcohols, and the word is a blend of "thio-" with "alcohol", where the first word deriving from Greek θεῖον (theion) meaning "sulfur".

Methanethiol Chemical compound

Methanethiol is an organosulfur compound with the chemical formula CH
3
SH
. It is a colorless gas with a distinctive putrid smell. It is a natural substance found in the blood, brain and feces of animals, as well as in plant tissues. It also occurs naturally in certain foods, such as some nuts and cheese. It is one of the chemical compounds responsible for bad breath and the smell of flatus. Methanethiol is the simplest thiol and is sometimes abbreviated as MeSH. It is very flammable.

Sulfide Ion, and compounds containing the ion

Sulfide (British English also sulphide) is an inorganic anion of sulfur with the chemical formula S2− or a compound containing one or more S2− ions. Solutions of sulfide salts are corrosive. Sulfide also refers to chemical compounds large families of inorganic and organic compounds, e.g. lead sulfide and dimethyl sulfide. Hydrogen sulfide (H2S) and bisulfide (SH) are the conjugate acids of sulfide.

Ethanethiol Chemical compound

Ethanethiol, commonly known as ethyl mercaptan, is an organosulfur compound with the formula CH3CH2SH. is a colorless liquid with a distinct odor. It Abbreviated EtSH, it consists of an ethyl group (Et), CH3CH2, attached to a thiol group, SH. Its structure parallels that of ethanol, but with sulfur in place of oxygen. The odor of EtSH is infamous. Ethanethiol is more volatile than ethanol due to a diminished ability to engage in hydrogen bonding. Ethanethiol is toxic in high concentrations. It occurs naturally as a minor component of petroleum, and may be added to otherwise odorless gaseous products such as liquefied petroleum gas (LPG) to help warn of gas leaks. At these concentrations, ethanethiol is not harmful.

An acidic oxide is an oxide that either produces an acidic solution upon addition to water, or acts as an acceptor of hydroxide ions effectively functioning as a Lewis acid. Acidic oxides will typically have a low pKa and may be inorganic or organic. A commonly encountered acidic oxide, carbon dioxide produces an acidic solution when dissolved.

Lead(II) oxide Chemical compound

Lead(II) oxide, also called lead monoxide, is the inorganic compound with the molecular formula PbO. PbO occurs in two polymorphs: litharge having a tetragonal crystal structure, and massicot having an orthorhombic crystal structure. Modern applications for PbO are mostly in lead-based industrial glass and industrial ceramics, including computer components. It is an amphoteric oxide.

Classical qualitative inorganic analysis is a method of analytical chemistry which seeks to find the elemental composition of inorganic compounds. It is mainly focused on detecting ions in an aqueous solution, therefore materials in other forms may need to be brought to this state before using standard methods. The solution is then treated with various reagents to test for reactions characteristic of certain ions, which may cause color change, precipitation and other visible changes.

Formate Salt or ester of formic acid

Formate is the anion derived from formic acid. A formate (compound) is a salt or ester of formic acid.

Sour gas is natural gas or any other gas containing significant amounts of hydrogen sulfide (H2S).

Lead(II,IV) oxide Chemical compound

Lead(II,IV) oxide, also called red lead or minium, is the inorganic compound with the formula . A bright red or orange solid, it is used as pigment, in the manufacture of batteries, and rustproof primer paints. It is an example of a mixed valence compound, being composed of both Pb(II) and Pb(IV) in the ratio of two to one.

The Wöhler synthesis is the conversion of ammonium cyanate into urea. This chemical reaction was described in 1828 by Friedrich Wöhler. It is often cited as the starting point of modern organic chemistry. Although the Wöhler reaction concerns the conversion of ammonium cyanate, this salt appears only as an (unstable) intermediate. Wöhler demonstrated the reaction in his original publication with different sets of reactants: a combination of cyanic acid and ammonia, a combination of silver cyanate and ammonium chloride, a combination of lead cyanate and ammonia and finally from a combination of mercury cyanate and cyanatic ammonia.

Hydrodesulfurization (HDS) is a catalytic chemical process widely used to remove sulfur (S) from natural gas and from refined petroleum products, such as gasoline or petrol, jet fuel, kerosene, diesel fuel, and fuel oils. The purpose of removing the sulfur, and creating products such as ultra-low-sulfur diesel, is to reduce the sulfur dioxide emissions that result from using those fuels in automotive vehicles, aircraft, railroad locomotives, ships, gas or oil burning power plants, residential and industrial furnaces, and other forms of fuel combustion.

Merox is an acronym for mercaptan oxidation. It is a proprietary catalytic chemical process developed by UOP used in oil refineries and natural gas processing plants to remove mercaptans from LPG, propane, butanes, light naphthas, kerosene and jet fuel by converting them to liquid hydrocarbon disulfides.

Thiocarbonate describes a family of anions with the general chemical formula CS
3−x
O2−
x
. Like the carbonate dianion, the thiocarbonates are planar, with carbon at the center. The average bond order from C to S or O is 1+13. The state of protonation is usually not specified. These anions are good nucleophiles and good ligands.

Petroleum refining processes

Petroleum refining processes are the chemical engineering processes and other facilities used in petroleum refineries to transform crude oil into useful products such as liquefied petroleum gas (LPG), gasoline or petrol, kerosene, jet fuel, diesel oil and fuel oils.

Tungsten trisulfide is an inorganic compound of tungsten and sulfur with the chemical formula WS3. The compound looks like chocolate-brown powder.

References

  1. McGraw-Hill Dictionary of Scientific and Technical Terms, 6th edition, published by The McGraw-Hill Companies, Inc., 2003
  2. G.L. Wendt, S.H. Diggs: The Chemistry of "Sweetening" in the Petroleum Industry, Industrial and Engineering Chemistry, Ausgabe 16, p. 1113-1115, 1924