Double ionization

Last updated

Double ionization is a process of formation of doubly charged ions when laser radiation or charged particles like electrons [1] , positrons [2] or heavy ions [3] are exerted on neutral atoms or molecules. Double ionization is usually less probable than single-electron ionization. Two types of double ionization are distinguished: sequential and non-sequential.

Contents

Sequential double ionization

Sequential double ionization is a process of formation of doubly charged ions consisting of two single-electron ionization events: the first electron is removed from a neutral atom/molecule (leaving a singly charged ion in the ground state or an excited state) followed by detachment of the second electron from the ion. [4]

Non-sequential double ionization

Non-sequential double ionization is a process whose mechanism differs (in any detail) from the sequential one. For example, both the electrons leave the system simultaneously (as in alkaline earth atoms, see below), the second electron's liberation is assisted by the first electron (as in noble gas atoms, see below), etc.

The phenomenon of non-sequential double ionization was experimentally discovered by Suran and Zapesochny for alkaline earth atoms as early as 1975. [5] Despite extensive studies, the details of double ionization in alkaline earth atoms remain unknown. It is supposed that double ionization in this case is realized by transitions of both the electrons through the spectrum of autoionizing atomic states, located between the first and second ionization potentials. [6] [7] [8] [9] [10] [11]

Non-sequential double ionization in alkaline earth atoms Simultaneous photo-detachment of two electrons.pdf
Non-sequential double ionization in alkaline earth atoms

For noble gas atoms, non-sequential double ionization was first observed by L'Huillier. [12] [13]   The interest to this phenomenon grew rapidly after it was rediscovered [14] [15] in infrared fields and for higher intensities. Multiple ionization has also been observed. [16] [17]   The mechanism of non-sequential double ionization in noble gas atoms differs from the one in alkaline earth atoms. For noble gas atoms in infrared laser fields, following one-electron ionization, the liberated electron can recollide with the parent ion. [18] [19] This electron acts as an "atomic antenna", [19] absorbing the energy from the laser field between ionization and recollision and depositing it into the parent ion. Inelastic scattering on the parent ion results in further collisional excitation and/or ionization. This mechanism is known as the three-step model of non-sequential double ionization, which is also closely related to the three step model of high harmonic generation.

Dynamics of double ionization within the three-step model strongly depends on the laser field intensity. The maximum energy (in atomic units) gained by the recolliding electron from the laser field is , [18] where is the ponderomotive energy, is the laser field strength, and is the laser frequency. Even when is far below ionization potential experiments have observed correlated ionization. [16] [17] [20] [21] [22]   As opposed to the high- regime () [23] [24] [25] [26] in the low- regime () the assistance of the laser field during the recollision is vital.

Classical and quantum analysis [27] [28] [29] of the low- regime demonstrates the following two ways of electron ejection after the recollision: First, the two electrons can be freed with little time delay compared to the quarter-cycle of the driving laser field. Second, the time delay between the ejection of the first and the second electron is of the order of the quarter-cycle of the driving field. In these two cases, the electrons appear in different quadrants of the correlated spectrum. If following the recollision, the electrons are ejected nearly simultaneously, their parallel momenta have equal signs, and both electrons are driven by the laser field in the same direction toward the detector [30] . If after the recollision, the electrons are ejected with a substantial delay (quarter-cycle or more), they end up going in the opposite directions. These two types of dynamics produce distinctly different correlated spectra (compare experimental results [16] [17] [20] [21] [22] with . [25] [26]

See also

Stylised atom with three Bohr model orbits and stylised nucleus.svg Physicsportal
Nuvola apps kalzium.svg Scienceportal

Related Research Articles

<span class="mw-page-title-main">Ionization</span> Process by which atoms or molecules acquire charge by gaining or losing electrons

Ionization is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule is called an ion. Ionization can result from the loss of an electron after collisions with subatomic particles, collisions with other atoms, molecules, electrons, positrons, protons, antiprotons and ions, or through the interaction with electromagnetic radiation. Heterolytic bond cleavage and heterolytic substitution reactions can result in the formation of ion pairs. Ionization can occur through radioactive decay by the internal conversion process, in which an excited nucleus transfers its energy to one of the inner-shell electrons causing it to be ejected.

<span class="mw-page-title-main">Photoionization</span> Ion formation via a photon interacting with a molecule or atom

Photoionization is the physical process in which an ion is formed from the interaction of a photon with an atom or molecule.

In physics, tunnel ionization is a process in which electrons in an atom tunnel through the potential barrier and escape from the atom. In an intense electric field, the potential barrier of an atom (molecule) is distorted drastically. Therefore, as the length of the barrier that electrons have to pass decreases, the electrons can escape from the atom's potential more easily. Tunneling ionization is a quantum mechanical phenomenon since in the classical picture an electron does not have sufficient energy to overcome the potential barrier of the atom.

<span class="mw-page-title-main">Rydberg atom</span> Excited atomic quantum state with high principal quantum number (n)

A Rydberg atom is an excited atom with one or more electrons that have a very high principal quantum number, n. The higher the value of n, the farther the electron is from the nucleus, on average. Rydberg atoms have a number of peculiar properties including an exaggerated response to electric and magnetic fields, long decay periods and electron wavefunctions that approximate, under some conditions, classical orbits of electrons about the nuclei. The core electrons shield the outer electron from the electric field of the nucleus such that, from a distance, the electric potential looks identical to that experienced by the electron in a hydrogen atom.

Koopmans' theorem states that in closed-shell Hartree–Fock theory (HF), the first ionization energy of a molecular system is equal to the negative of the orbital energy of the highest occupied molecular orbital (HOMO). This theorem is named after Tjalling Koopmans, who published this result in 1934.

This page deals with the electron affinity as a property of isolated atoms or molecules. Solid state electron affinities are not listed here.

High-harmonic generation (HHG) is a non-linear process during which a target is illuminated by an intense laser pulse. Under such conditions, the sample will emit the high order harmonics of the generation beam. Due to the coherent nature of the process, high-harmonics generation is a prerequisite of attosecond physics.

<span class="mw-page-title-main">Dihydrogen cation</span> Molecular ion

The dihydrogen cation or hydrogen molecular ion is a cation with formula . It consists of two hydrogen nuclei (protons), each sharing a single electron. It is the simplest molecular ion.

<span class="mw-page-title-main">Collision cascade</span> Series of collisions between nearby atoms, initiated by a single energetic atom

In condensed-matter physics, a collision cascade is a set of nearby adjacent energetic collisions of atoms induced by an energetic particle in a solid or liquid.

A composite fermion is the topological bound state of an electron and an even number of quantized vortices, sometimes visually pictured as the bound state of an electron and, attached, an even number of magnetic flux quanta. Composite fermions were originally envisioned in the context of the fractional quantum Hall effect, but subsequently took on a life of their own, exhibiting many other consequences and phenomena.

<span class="mw-page-title-main">Trojan wave packet</span> Wave packet that is nonstationary and nonspreading

In physics, a trojan wave packet is a wave packet that is nonstationary and nonspreading. It is part of an artificially created system that consists of a nucleus and one or more electron wave packets, and that is highly excited under a continuous electromagnetic field. Its discovery as one of significant contributions to the quantum mechanics was awarded the 2022 Wigner Medal for Iwo Bialynicki-Birula

Photoelectrochemical processes are processes in photoelectrochemistry; they usually involve transforming light into other forms of energy. These processes apply to photochemistry, optically pumped lasers, sensitized solar cells, luminescence, and photochromism.

Interatomic Coulombic decay (ICD) is a general, fundamental property of atoms and molecules that have neighbors. Interatomic (intermolecular) Coulombic decay is a very efficient interatomic (intermolecular) relaxation process of an electronically excited atom or molecule embedded in an environment. Without the environment the process cannot take place. Until now it has been mainly demonstrated for atomic and molecular clusters, independently of whether they are of van-der-Waals or hydrogen bonded type.

<span class="mw-page-title-main">Above-threshold ionization</span> Ionization by more photons than are required

In atomic, molecular, and optical physics, above-threshold ionization (ATI) is a multi-photon effect where an atom is ionized with more than the energetically required number of photons. It was first observed in 1979 by Pierre Agostini and colleagues in xenon gas.

<span class="mw-page-title-main">Helium dimer</span> Chemical compound

The helium dimer is a van der Waals molecule with formula He2 consisting of two helium atoms. This chemical is the largest diatomic molecule—a molecule consisting of two atoms bonded together. The bond that holds this dimer together is so weak that it will break if the molecule rotates, or vibrates too much. It can only exist at very low cryogenic temperatures.

Quantum microscopy allows microscopic properties of matter and quantum particles to be measured and imaged. Various types of microscopy use quantum principles. The first microscope to do so was the scanning tunneling microscope, which paved the way for development of the photoionization microscope and the quantum entanglement microscope.

The Dreicer field is the critical electric field above which electrons in a collisional plasma can be accelerated to become runaway electrons. It was named after Harry Dreicer who derived the expression in 1959 and expanded on the concept in 1960. The Dreicer field is an important parameter in the study of tokamaks to suppress runaway generation in nuclear fusion.

<span class="mw-page-title-main">John H. Malmberg</span> American physicist

John Holmes Malmberg was an American plasma physicist and a professor at the University of California, San Diego. He was known for making the first experimental measurements of Landau damping of plasma waves in 1964, as well as for his research on non-neutral plasmas and the development of the Penning–Malmberg trap.

<span class="mw-page-title-main">Penning–Malmberg trap</span> Electromagnetic device used to confine particles of a single sign of charge

The Penning–Malmberg trap, named after Frans Penning and John Malmberg, is an electromagnetic device used to confine large numbers of charged particles of a single sign of charge. Much interest in Penning–Malmberg (PM) traps arises from the fact that if the density of particles is large and the temperature is low, the gas will become a single-component plasma. While confinement of electrically neutral plasmas is generally difficult, single-species plasmas can be confined for long times in PM traps. They are the method of choice to study a variety of plasma phenomena. They are also widely used to confine antiparticles such as positrons and antiprotons for use in studies of the properties of antimatter and interactions of antiparticles with matter.

Linda Young is a distinguished fellow at the U.S. Department of Energy’s (DOE) Argonne National Laboratory and a professor at the University of Chicago’s Department of Physics and James Franck Institute. Young is also the former director of Argonne’s X-ray Science Division.

References

  1. Berakdar, J.; Lahmam-Bennani, A.; Dal Capello, C. (2003). "The electron-impact double ionization of atoms: an insight into the four-body Coulomb scattering dynamics". Physics Reports. 374 (2): 91–164. Bibcode:2003PhR...374...91B. doi:10.1016/S0370-1573(02)00515-X.
  2. Simonović, N.; Lukić, D.; Grujić, P. (2005). "Double ionization by positrons near threshold". J. Phys. B. 38 (17): 3147–3161. Bibcode:2005JPhB...38.3147S. doi:10.1088/0953-4075/38/17/006.
  3. DuBois, R.D.; Santos, A.C.F.; Manson, S.T. (2014). "Empirical formulas for direct double ionization by bare ions: 𝑍=−1 to 92". Physical Review A. 90: 052721. doi:10.1103/PhysRevA.90.052721.
  4. Delone, N. B.; Krainov, V. P. (2000). Multiphoton Processes in Atoms. Springer. ISBN   3540646159., chapter 8.
  5. Suran, V. V.; Zapesochny, I. P. (1975). "Observation of Sr2+ in multiple-photon ionization of strontium". Sov. Tech. Phys. Lett. 1 (11): 420.
  6. Lambropoulos, P.; Tang, X.; Agostini, P.; Petite, G.; L'Huillier, A. (1988). "Multiphoton spectroscopy of doubly excited, bound, and autoionizing states of strontium". Physical Review A. 38 (12): 6165–6179. Bibcode:1988PhRvA..38.6165L. doi:10.1103/PhysRevA.38.6165. PMID   9900374.
  7. Bondar', I. I.; Suran, V. V. (1993). "The two-electron mechanism of Ba2+ ion formation in the ionization of Ba atoms by YAG-laser radiation". JETP. 76 (3): 381. Bibcode:1993JETP...76..381B. Archived from the original on December 21, 2012.
  8. Bondar’, I. I.; Suran, V. V. (1998). "Resonance structure of doubly-charged-ion production during laser dielectronic ionization of atoms". Journal of Experimental and Theoretical Physics Letters. 68 (11): 837. Bibcode:1998JETPL..68..837B. doi:10.1134/1.567802. S2CID   120658599.
  9. Bondar, I. I.; Suran, V. V.; Dudich, M. I. (2000). "Resonant structure in doubly charged ion formation during multiphoton ionization of Sr and Ba atoms by infrared laser radiation". Journal of Physics B: Atomic, Molecular and Optical Physics. 33 (20): 4243. Bibcode:2000JPhB...33.4243B. doi:10.1088/0953-4075/33/20/304. S2CID   250826815.
  10. Liontos, I.; Bolovinos, A.; Cohen, S.; Lyras, A. (2004). "Single and double ionization of magnesium via four-photon excitation of the 3p^{2}^{1}S_{0} autoionizing state: Experimental and theoretical analysis". Physical Review A. 70 (3): 033403. Bibcode:2004PhRvA..70c3403L. doi:10.1103/PhysRevA.70.033403.
  11. Liontos, I.; Cohen, S.; Lyras, A. (2010). "Multiphoton Ca2+production occurring before the onset of Ca+saturation: Is it a fingerprint of direct double ionization?". Journal of Physics B: Atomic, Molecular and Optical Physics. 43 (9): 095602. Bibcode:2010JPhB...43i5602L. doi:10.1088/0953-4075/43/9/095602. S2CID   119869086.
  12. l'Huillier, A.; Lompre, L.; Mainfray, G.; Manus, C. (1982). "Multiply Charged Ions Formed by Multiphoton Absorption Processes in the Continuum". Physical Review Letters. 48 (26): 1814. Bibcode:1982PhRvL..48.1814L. doi:10.1103/PhysRevLett.48.1814.
  13. l'Huillier, A.; Lompre, L. A.; Mainfray, G.; Manus, C. (1983). "Multiply charged ions induced by multiphoton absorption in rare gases at 0.53 μm". Physical Review A. 27 (5): 2503. Bibcode:1983PhRvA..27.2503L. doi:10.1103/PhysRevA.27.2503.
  14. Walker, B.; Mevel, E.; Yang, B.; Breger, P.; Chambaret, J.; Antonetti, A.; Dimauro, L.; Agostini, P. (1993). "Double ionization in the perturbative and tunneling regimes". Physical Review A. 48 (2): R894–R897. Bibcode:1993PhRvA..48..894W. doi:10.1103/PhysRevA.48.R894. PMID   9909791.
  15. Walker, B.; Sheehy, B.; Dimauro, L.; Agostini, P.; Schafer, K.; Kulander, K. (1994). "Precision Measurement of Strong Field Double Ionization of Helium". Physical Review Letters. 73 (9): 1227–1230. Bibcode:1994PhRvL..73.1227W. doi:10.1103/PhysRevLett.73.1227. PMID   10057657.
  16. 1 2 3 Rudenko, A.; Zrost, K.; Feuerstein, B.; De Jesus, V.; Schröter, C.; Moshammer, R.; Ullrich, J. (2004). "Correlated Multielectron Dynamics in Ultrafast Laser Pulse Interactions with Atoms". Physical Review Letters. 93 (25): 253001. arXiv: physics/0408065 . Bibcode:2004PhRvL..93y3001R. doi:10.1103/PhysRevLett.93.253001. PMID   15697894. S2CID   40450686.
  17. 1 2 3 Zrost, K.; Rudenko, A.; Ergler, T.; Feuerstein, B.; Jesus, V. L. B. D.; Schröter, C. D.; Moshammer, R.; Ullrich, J. (2006). "Multiple ionization of Ne and Ar by intense 25 fs laser pulses: Few-electron dynamics studied with ion momentum spectroscopy". Journal of Physics B: Atomic, Molecular and Optical Physics. 39 (13): S371. Bibcode:2006JPhB...39S.371Z. doi:10.1088/0953-4075/39/13/S10. S2CID   122414336.
  18. 1 2 Corkum, P. (1993). "Plasma perspective on strong field multiphoton ionization". Physical Review Letters. 71 (13): 1994–1997. Bibcode:1993PhRvL..71.1994C. doi:10.1103/PhysRevLett.71.1994. PMID   10054556. S2CID   29947935.
  19. 1 2 Kuchiev, M. Y. (1987). "Atomic Antenna". JETP Letters. 45: 404. Bibcode:1987JETPL..45..404K.[ permanent dead link ]
  20. 1 2 Zeidler, D.; Staudte, A.; Bardon, A. B.; Villeneuve, D. M.; Dörner, R.; Corkum, P. B. (2005). "Controlling Attosecond Double Ionization Dynamics via Molecular Alignment". Physical Review Letters. 95 (20): 203003. Bibcode:2005PhRvL..95t3003Z. doi:10.1103/PhysRevLett.95.203003. PMID   16384053.
  21. 1 2 Weckenbrock, M.; Zeidler, D.; Staudte, A.; Weber, T.; Schöffler, M.; Meckel, M.; Kammer, S.; Smolarski, M.; Jagutzki, O.; Bhardwaj, V.; Rayner, D.; Villeneuve, D.; Corkum, P.; Dörner, R. (2004). "Fully Differential Rates for Femtosecond Multiphoton Double Ionization of Neon". Physical Review Letters. 92 (21): 213002. Bibcode:2004PhRvL..92u3002W. doi:10.1103/PhysRevLett.92.213002. PMID   15245277.
  22. 1 2 Liu, Y.; Tschuch, S.; Rudenko, A.; Dürr, M.; Siegel, M.; Morgner, U.; Moshammer, R.; Ullrich, J. (2008). "Strong-Field Double Ionization of Ar below the Recollision Threshold". Physical Review Letters. 101 (5): 053001. Bibcode:2008PhRvL.101e3001L. doi:10.1103/PhysRevLett.101.053001. PMID   18764387.
  23. Yudin, G.; Ivanov, M. (2001). "Physics of correlated double ionization of atoms in intense laser fields: Quasistatic tunneling limit". Physical Review A. 63 (3): 033404. Bibcode:2001PhRvA..63c3404Y. doi:10.1103/PhysRevA.63.033404.
  24. Becker, A.; Faisal, F. H. M. (2005). "Intense-field many-body S-matrix theory". Journal of Physics B: Atomic, Molecular and Optical Physics. 38 (3): R1. Bibcode:2005JPhB...38R...1B. doi:10.1088/0953-4075/38/3/R01. S2CID   14675241.
  25. 1 2 Staudte, A.; Ruiz, C.; Schöffler, M.; Schössler, S.; Zeidler, D.; Weber, T.; Meckel, M.; Villeneuve, D.; Corkum, P.; Becker, A.; Dörner, R. (2007). "Binary and Recoil Collisions in Strong Field Double Ionization of Helium". Physical Review Letters. 99 (26): 263002. Bibcode:2007PhRvL..99z3002S. doi:10.1103/PhysRevLett.99.263002. PMID   18233574.
  26. 1 2 Rudenko, A.; De Jesus, V.; Ergler, T.; Zrost, K.; Feuerstein, B.; Schröter, C.; Moshammer, R.; Ullrich, J. (2007). "Correlated Two-Electron Momentum Spectra for Strong-Field Nonsequential Double Ionization of He at 800 nm". Physical Review Letters. 99 (26): 263003. Bibcode:2007PhRvL..99z3003R. doi:10.1103/PhysRevLett.99.263003. PMID   18233575.
  27. Haan, S.; Breen, L.; Karim, A.; Eberly, J. (2006). "Variable Time Lag and Backward Ejection in Full-Dimensional Analysis of Strong-Field Double Ionization". Physical Review Letters. 97 (10): 103008. Bibcode:2006PhRvL..97j3008H. doi:10.1103/PhysRevLett.97.103008. PMID   17025816.
  28. Ho, P.; Eberly, J. (2006). "In-Plane Theory of Nonsequential Triple Ionization". Physical Review Letters. 97 (8): 083001. arXiv: physics/0605026 . Bibcode:2006PhRvL..97h3001H. doi:10.1103/PhysRevLett.97.083001. PMID   17026298. S2CID   8978621.
  29. Figueira De Morisson Faria, C.; Liu, X.; Becker, W. (2006). "Classical aspects of laser-induced non-sequential double ionization above and below the threshold". Journal of Modern Optics. 53 (1–2): 193–206. Bibcode:2006JMOp...53..193F. doi:10.1080/09500340500227869. S2CID   120011073.
  30. Bondar, D.; Liu, W. K.; Ivanov, M. (2009). "Two-electron ionization in strong laser fields below intensity threshold: Signatures of attosecond timing in correlated spectra". Physical Review A. 79 (2): 023417. arXiv: 0809.2630 . Bibcode:2009PhRvA..79b3417B. doi:10.1103/PhysRevA.79.023417. S2CID   119275628.