Dowker space

Last updated

In the mathematical field of general topology, a Dowker space is a topological space that is T4 but not countably paracompact. They are named after Clifford Hugh Dowker.

The non-trivial task of providing an example of a Dowker space (and therefore also proving their existence as mathematical objects) helped mathematicians better understand the nature and variety of topological spaces.

Equivalences

Dowker showed, in 1951, the following:

If X is a normal T1 space (that is, a T4 space), then the following are equivalent:

Dowker conjectured that there were no Dowker spaces, and the conjecture was not resolved until Mary Ellen Rudin constructed one in 1971. [2] Rudin's counterexample is a very large space (of cardinality ). Zoltán Balogh gave the first ZFC construction of a small (cardinality continuum) example, [3] which was more well-behaved than Rudin's. Using PCF theory, M. Kojman and S. Shelah constructed a subspace of Rudin's Dowker space of cardinality that is also Dowker. [4]

Related Research Articles

In mathematics, specifically set theory, the continuum hypothesis is a hypothesis about the possible sizes of infinite sets. It states:

"There is no set whose cardinality is strictly between that of the integers and the real numbers."

In mathematics, transfinite numbers or infinite numbers are numbers that are "infinite" in the sense that they are larger than all finite numbers. These include the transfinite cardinals, which are cardinal numbers used to quantify the size of infinite sets, and the transfinite ordinals, which are ordinal numbers used to provide an ordering of infinite sets. The term transfinite was coined in 1895 by Georg Cantor, who wished to avoid some of the implications of the word infinite in connection with these objects, which were, nevertheless, not finite. Few contemporary writers share these qualms; it is now accepted usage to refer to transfinite cardinals and ordinals as infinite numbers. Nevertheless, the term transfinite also remains in use.

<span class="mw-page-title-main">Aleph number</span> Infinite cardinal number

In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are named after the symbol he used to denote them, the Hebrew letter aleph (ℵ).

In mathematics, a Lindelöf space is a topological space in which every open cover has a countable subcover. The Lindelöf property is a weakening of the more commonly used notion of compactness, which requires the existence of a finite subcover.

In topology, the long line is a topological space somewhat similar to the real line, but in a certain way "longer". It behaves locally just like the real line, but has different large-scale properties. Therefore, it serves as an important counterexample in topology. Intuitively, the usual real-number line consists of a countable number of line segments laid end-to-end, whereas the long line is constructed from an uncountable number of such segments.

PCF theory is the name of a mathematical theory, introduced by Saharon Shelah, that deals with the cofinality of the ultraproducts of ordered sets. It gives strong upper bounds on the cardinalities of power sets of singular cardinals, and has many more applications as well. The abbreviation "PCF" stands for "possible cofinalities".

Zoltán "Zoli" Tibor Balogh was a Hungarian-born mathematician, specializing in set-theoretic topology. His father, Tibor Balogh, was also a mathematician. His best-known work concerned solutions to problems involving normality of products, most notably the first ZFC construction of a small Dowker space. He also solved Nagami's problem, and the second and third Morita conjectures about normality in products.

In mathematics, set-theoretic topology is a subject that combines set theory and general topology. It focuses on topological questions that are independent of Zermelo–Fraenkel set theory (ZFC).

In model theory, a branch of mathematical logic, the spectrum of a theory is given by the number of isomorphism classes of models in various cardinalities. More precisely, for any complete theory T in a language we write I(T, κ) for the number of models of T (up to isomorphism) of cardinality κ. The spectrum problem is to describe the possible behaviors of I(T, κ) as a function of κ. It has been almost completely solved for the case of a countable theory T.

In mathematics, in the field of topology, a topological space is said to be pseudocompact if its image under any continuous function to R is bounded. Many authors include the requirement that the space be completely regular in the definition of pseudocompactness. Pseudocompact spaces were defined by Edwin Hewitt in 1948.

In the mathematical field of set theory, the proper forcing axiom (PFA) is a significant strengthening of Martin's axiom, where forcings with the countable chain condition (ccc) are replaced by proper forcings.

The Morita conjectures in general topology are certain problems about normal spaces, now solved in the affirmative. The conjectures, formulated by Kiiti Morita in 1976, asked

  1. If is normal for every normal space Y, is X a discrete space?
  2. If is normal for every normal P-space Y, is X metrizable?
  3. If is normal for every normal countably paracompact space Y, is X metrizable and sigma-locally compact?

In set theory, an Aronszajn tree is a tree of uncountable height with no uncountable branches and no uncountable levels. For example, every Suslin tree is an Aronszajn tree. More generally, for a cardinal κ, a κ-Aronszajn tree is a tree of height κ in which all levels have size less than κ and all branches have height less than κ. They are named for Nachman Aronszajn, who constructed an Aronszajn tree in 1934; his construction was described by Kurepa (1935).

The Vaught conjecture is a conjecture in the mathematical field of model theory originally proposed by Robert Lawson Vaught in 1961. It states that the number of countable models of a first-order complete theory in a countable language is finite or ℵ0 or 20. Morley showed that the number of countable models is finite or ℵ0 or ℵ1 or 20, which solves the conjecture except for the case of ℵ1 models when the continuum hypothesis fails. For this remaining case, Robin Knight has announced a counterexample to the Vaught conjecture and the topological Vaught conjecture. As of 2021, the counterexample has not been verified.

<span class="mw-page-title-main">Clifford Hugh Dowker</span> Canadian topologist (1912–1982)

Clifford Hugh Dowker was a topologist known for his work in point-set topology and also for his contributions in category theory, sheaf theory and knot theory.

In mathematics, the first uncountable ordinal, traditionally denoted by or sometimes by , is the smallest ordinal number that, considered as a set, is uncountable. It is the supremum of all countable ordinals. When considered as a set, the elements of are the countable ordinals, of which there are uncountably many.

In the mathematical discipline of set theory, a cardinal characteristic of the continuum is an infinite cardinal number that may consistently lie strictly between , and the cardinality of the continuum, that is, the cardinality of the set of all real numbers. The latter cardinal is denoted or . A variety of such cardinal characteristics arise naturally, and much work has been done in determining what relations between them are provable, and constructing models of set theory for various consistent configurations of them.

The open coloring axiom is an axiom about coloring edges of a graph whose vertices are a subset of the real numbers: two different versions were introduced by Abraham, Rubin & Shelah (1985) and by Todorčević (1989).

References

  1. Dowker, C. H. (1951). "On countably paracompact spaces" (PDF). Can. J. Math. 3: 219–224. doi:10.4153/CJM-1951-026-2. Zbl   0042.41007. Archived from the original (PDF) on July 14, 2014. Retrieved March 29, 2015.
  2. Rudin, Mary Ellen (1971). "A normal space X for which X × I is not normal" (PDF). Fundam. Math. 73 (2). Polish Academy of Sciences: 179–186. doi:10.4064/fm-73-2-179-186. Zbl   0224.54019 . Retrieved March 29, 2015.
  3. Balogh, Zoltan T. (August 1996). "A small Dowker space in ZFC" (PDF). Proc. Amer. Math. Soc. 124 (8): 2555–2560. doi:10.1090/S0002-9939-96-03610-6. Zbl   0876.54016 . Retrieved March 29, 2015.
  4. Kojman, Menachem; Shelah, Saharon (1998). "A ZFC Dowker space in : an application of PCF theory to topology" (PDF). Proc. Amer. Math. Soc. 126 (8). American Mathematical Society: 2459–2465. doi:10.1090/S0002-9939-98-04884-9 . Retrieved March 29, 2015.