Drill pipe

Last updated
Pipe rack.jpg
Drill pipe.jpg

Drill pipe, is hollow, thin-walled, steel or aluminium alloy piping that is used on drilling rigs. It is hollow to allow drilling fluid to be pumped down the hole through the bit and back up the annulus. It comes in a variety of sizes, strengths, and wall thicknesses, but is typically 27 to 32 feet in length (Range 2). Longer lengths, up to 45 feet, exist (Range 3).

Contents

Background

Drill stems must be designed to transfer drilling torque for combined lengths that often exceed several miles down into the Earth's crust, and also must be able to resist pressure differentials between inside and outside (or vice versa), and have sufficient strength to suspend the total weight of deeper components. For deep wells this requires tempered steel tubes that are expensive, and owners spend considerable efforts to reuse them after finishing a well.

A used drill stem is inspected on site, or off location. Ultrasonic testing and modified instruments similar to the spherometer are used at inspection sites to identify defects from metal fatigue, in order to preclude fracture of the drill stem during future wellboring. Drill pipe is most often considered premium class, which is 80% remaining body wall (RBW). After inspection determines that the RBW is below 80%, the pipe is considered to be Class 2 or "yellow band" pipe. Eventually the drill pipe will be graded as scrap and marked with a red band.

Drill pipe is a portion of the overall drill string. The drill string consists of both drill pipe and the bottom hole assembly (BHA), which is the tubular portion closest to the bit. The BHA will be made of thicker walled heavy weight drill pipe (HWDP) and drill collars, which have a larger outside diameter and provide weight to the drill bit and stiffness to the drilling assembly. Other BHA components can include a mud motor, measurement while drilling (MWD) apparatus, stabilizers, and various specialty downhole tools. The drill stem includes the entire drill string, plus the kelly that imparts rotation and torque to the drill pipe at the top.

See Drilling rig (petroleum) for a diagram of a drilling rig.

Manufacturing process

Modern drill pipe is made from the welding of at least three separate pieces: box tool joint, pin tool joint, and the tube. The green tubes are received by the drill pipe manufacturer from the steel mill. The ends of the tubes are then upset to increase the cross-sectional area of the ends. The tube end may be externally upset (EU), internally upset (IU), or internally and externally upset (IEU). Standard max upset dimensions are specified in API 5DP, but the exact dimensions of the upset are proprietary to the manufacturer. After upsetting, the tube then goes through a heat treating process. Drill pipe steel is commonly quenched and tempered to achieve high yield strengths (135 ksi is a common tube yield strength).

The tool joints (connectors) are also received by the manufacturer as green tubes. After a quench and temper heat treat, the tool joints are cut into box (female) and pin (male) threads. Tool joints are commonly 120 ksi Specified Minimum Yield Strength (SMYS), rather than the 135 ksi of the tube. They generally are stiffer than the tube, increasing the likelihood of fatigue failure at the junction. The lower SMYS on the connection increases the fatigue resistance. Higher strength steels are typically harder and more brittle, making them more susceptible to cracking and subsequent stress crack propagation.

Tubes and tool joints are welded using rotary inertia or direct drive friction welding. The tube is held stationary while the tool joint is revolved at high RPMs. The tool joint is then firmly pressed onto the upset end of the tube while the tool joint is rotating. The heat and force during this interaction weld the two together. Once the "ram horns" or excess material is removed, the weld line can only be seen under a microscope. Inertia friction welding is the traditional proven method. Direct drive friction welding is controlled and monitored up to 1,000 times a second, resulting in a fine quality weld that does not necessarily need a full heat treat quench and temper regime.

Related Research Articles

<span class="mw-page-title-main">Drill string</span> Drill pipe that transmits drilling fluid

A drill string on a drilling rig is a column, or string, of drill pipe that transmits drilling fluid and torque to the drill bit. The term is loosely applied to the assembled collection of the smuggler pool, drill collars, tools and drill bit. The drill string is hollow so that drilling fluid can be pumped down through it and circulated back up the annulus.

<span class="mw-page-title-main">Rivet</span> Permanent mechanical fastener

A rivet is a permanent mechanical fastener. Before being installed, a rivet consists of a smooth cylindrical shaft with a head on one end. The end opposite the head is called the tail. On installation, the deformed end is called the shop head or buck-tail.

<span class="mw-page-title-main">Martensitic stainless steel</span> One of the 5 crystalline structures of stainless steel

Martensitic stainless steel is a type of stainless steel alloy that has a martensite crystal structure. It can be hardened and tempered through aging and heat treatment. The other main types of stainless steel are austenitic, ferritic, duplex, and precipitation hardened.

<span class="mw-page-title-main">Carbon steel</span> Steel in which the main interstitial alloying constituent is carbon

Carbon steel is a steel with carbon content from about 0.05 up to 2.1 percent by weight. The definition of carbon steel from the American Iron and Steel Institute (AISI) states:

<span class="mw-page-title-main">Tempering (metallurgy)</span> Process of heat treating used to increase the toughness of iron-based alloys

Tempering is a process of heat treating, which is used to increase the toughness of iron-based alloys. Tempering is usually performed after hardening, to reduce some of the excess hardness, and is done by heating the metal to some temperature below the critical point for a certain period of time, then allowing it to cool in still air. The exact temperature determines the amount of hardness removed, and depends on both the specific composition of the alloy and on the desired properties in the finished product. For instance, very hard tools are often tempered at low temperatures, while springs are tempered at much higher temperatures.

<span class="mw-page-title-main">Strapping</span> Fastening a strap around item or bundle

Strapping, also known as bundling and banding, is the process of applying a strap to an item to combine, stabilize, hold, reinforce, or fasten it. A strap may also be referred to as strapping. Strapping is most commonly used in the packaging industry.

<span class="mw-page-title-main">Pipe (fluid conveyance)</span> Tubular section or hollow cylinder

A pipe is a tubular section or hollow cylinder, usually but not necessarily of circular cross-section, used mainly to convey substances which can flow — liquids and gases (fluids), slurries, powders and masses of small solids. It can also be used for structural applications; hollow pipe is far stiffer per unit weight than solid members.

<span class="mw-page-title-main">Structural steel</span> Type of steel used in construction

Structural steel is a category of steel used for making construction materials in a variety of shapes. Many structural steel shapes take the form of an elongated beam having a profile of a specific cross section. Structural steel shapes, sizes, chemical composition, mechanical properties such as strengths, storage practices, etc., are regulated by standards in most industrialized countries.

<span class="mw-page-title-main">Drill stem test</span>

A drill stem test (DST) is a procedure for isolating and testing the pressure, permeability and productive capacity of a geological formation during the drilling of a well. The test is an important measurement of pressure behaviour at the drill stem and is a valuable way of obtaining information on the formation fluid and establishing whether a well has found a commercial hydrocarbon reservoir.

A514 is a particular type of high strength steel, which is quenched and tempered alloy steel, with a yield strength of 100,000 psi. The ArcelorMittal trademarked name is T-1. A514 is primarily used as a structural steel for building construction. A517 is a closely related alloy that is used for the production of high-strength pressure vessels.

6061 aluminium alloy is a precipitation-hardened aluminium alloy, containing magnesium and silicon as its major alloying elements. Originally called "Alloy 61S", it was developed in 1935. It has good mechanical properties, exhibits good weldability, and is very commonly extruded. It is one of the most common alloys of aluminium for general-purpose use.

2024 aluminium alloy is an aluminium alloy, with copper as the primary alloying element. It is used in applications requiring high strength-to-weight ratio, as well as good fatigue resistance. It is weldable only through friction welding, and has average machinability. Due to poor corrosion resistance, it is often clad with aluminium or Al-1Zn for protection, although this may reduce the fatigue strength. In older systems of terminology, 2XXX series alloys were known as duralumin, and this alloy was named 24ST.

<span class="mw-page-title-main">Coiled tubing</span> Long metal pipe used in oil and gas wells

In the oil and gas industry, coiled tubing refers to a long metal pipe, normally 1 to 3.25 in in diameter which is supplied spooled on a large reel. It is used for interventions in oil and gas wells and sometimes as production tubing in depleted gas wells. Coiled tubing is often used to carry out operations similar to wirelining. The main benefits over wireline are the ability to pump chemicals through the coil and the ability to push it into the hole rather than relying on gravity. Pumping can be fairly self-contained, almost a closed system, since the tube is continuous instead of jointed pipe. For offshore operations, the 'footprint' for a coiled tubing operation is generally larger than a wireline spread, which can limit the number of installations where coiled tubing can be performed and make the operation more costly. A coiled tubing operation is normally performed through the drilling derrick on the oil platform, which is used to support the surface equipment, although on platforms with no drilling facilities a self-supporting tower can be used instead. For coiled tubing operations on sub-sea wells a mobile offshore drilling unit (MODU) e.g. semi-submersible, drillship etc. has to be utilized to support all the surface equipment and personnel, whereas wireline can be carried out from a smaller and cheaper intervention vessel. Onshore, they can be run using smaller service rigs, and for light operations a mobile self-contained coiled tubing rig can be used.

<span class="mw-page-title-main">Baptist well drilling</span>

Baptist well drilling is a very simple, manual method to drill water wells. The Baptist drilling rig can be built in any ordinary arc welding workshop and materials for a basic version costs about 150 US dollars. In suitable conditions, boreholes over 100 m deep have been drilled with this method.

Specified Minimum Yield Strength (SMYS) means the specified minimum yield strength for steel pipe manufactured in accordance with a listed specification1. This is a common term used in the oil and gas industry for steel pipe used under the jurisdiction of the United States Department of Transportation. It is an indication of the minimum stress a pipe may experience that will cause plastic (permanent) deformation.

Microalloyed steel is a type of alloy steel that contains small amounts of alloying elements, including niobium, vanadium, titanium, molybdenum, zirconium, boron, and rare-earth metals. They are used to refine the grain microstructure or facilitate precipitation hardening.

A bottom hole assembly (BHA) is a component of a drilling rig. It is the lowest part of the drill string, extending from the bit to the drill pipe. The assembly can consist of drill collars, subs such as stabilisers, reamers, shocks, hole-openers, and the bit sub and bit.

5059 aluminium alloy is an aluminium–magnesium alloy, primarily alloyed with magnesium. It is not strengthened by heat treatment, instead becoming stronger due to strain hardening, or cold mechanical working of the material.

<span class="mw-page-title-main">Pipe recovery operations</span>

Pipe recovery is a specific wireline operation used in the oil and gas industry, when the drill string becomes stuck downhole. Stuck pipe prevents the drill rig from continuing operations. This results in costly downtime, ranging anywhere from $10,000-1,000,000 per day of downtime, therefore it is critical to resolve the problem as quickly as possible. Pipe recovery is the process by which the location of the stuck pipe is identified, and the free pipe is separated from the stuck pipe either by a backoff or a chemical cut. This allows fishing tools to subsequently be run down hole to latch onto and remove the stuck pipe.

Rotary friction welding (RFW) one of the methods of friction welding, the classic way of which uses the work of friction to create a not separable weld. Typically one welded element is rotated relative to the other and to the forge. The heating of the material is caused by friction work and creates a permanent connection. In this method, the materials to be welded can be the same, dissimilar, composite or non-metallic materials. Friction welding methods of are often considered as solid-state welding.

References

    Anderson, Robert O. (1984). Fundamentals of the Petroleum Industry. Norman, Oklahoma: University of Oklahoma Press. ISBN   0-585-19475-0.Recommended Practice for Drill Stem Design and Operating Limits. Norman, Oklahoma: American Petroleum Institute. 1998.