Dual coupling

Last updated
Combined Janney and Shibata couplers on a JNR Class EF63 locomotive (left) connected to a 115 series EMU (right). The dual couplers are mounted to a pivot, allowing both to swing. EF63-115.jpg
Combined Janney and Shibata couplers on a JNR Class EF63 locomotive (left) connected to a 115 series EMU (right). The dual couplers are mounted to a pivot, allowing both to swing.

Different types of railroad rolling stock have different couplers depending on the purpose and type of equipment being used and its intended destination. European rolling stock tend to use buffers and chain couplers while American rolling stock uses a Janney coupler or "knuckle coupler". These are incompatible with each other, but where some railroads have obtained older, less expensive used rolling stock from different countries or regions, instead of having to standardize on one form of coupler, it may be useful to be able to use either type of coupler on a piece of rolling stock without having to remove anything.

Contents

It is possible to mount both buffers and chain and knuckle couplers on the same car, provided that the knuckle can swing out of the way. Alternatively, either a lug to hold the chain is cast in the body of the coupler or a chain is mounted on top of the coupler. This is also done with an SA3 coupler built by SAB WABCO. [1]

Locomotives and some freight cars of the Indian Railways are fitted with a 'transition coupler' that incorporates a screw coupling within a knuckle coupler: the knuckle coupler remains in position and does not swing away when not in use. The screw coupling is mounted on a hinge on the opposite side of the knuckle coupler. Most Indian freight cars use the knuckle coupler alone, without buffers, whereas passenger coaches almost exclusively use screw couplers and buffers. Exceptions are the new LHB coaches imported from Europe, and a few other makes of carriages converted to use knuckle couplers. [2] [3]

Some Russian locomotives and wagons have buffers together with the central coupler. When coupling to Finnish equipment, a short chain with a block that fits in the central coupler is placed on the Russian side, backing up and compressing the buffers so that the chain can be laid on the hook. (That is also the common way of coupling locomotives to or from wagons, faster than unscrewing the link.)

British locomotive-hauled passenger carriages adopted a dual coupling system in the 1950s. They have retractable buffers and a central Buckeye automatic knuckle coupler that lowers to reveal a hook for a screw-type chain coupling. When in use, a pin through the buckeye shank rests in the conventional hook. No chain is provided on dual-coupled vehicles, since the chain on the other vehicle can be used when the knuckle coupler is out of the way (down). Inter-stock coupling was with the automatic coupler (with the buffers retracted), while connection to the locomotive was with the buffer-and-chain system with a screw coupler. Today this dual coupling system has been adopted for all loco-hauled passenger trains in Great Britain to allow faster shunting operations.

See also

Related Research Articles

<span class="mw-page-title-main">Railway coupling</span> Mechanism for connecting rolling stock in a train

A coupling or coupler is a mechanism, typically located at each end of a rail vehicle, that connects them together to form a train. The equipment that connects the couplers to the vehicles is the draft gear or draw gear, which must absorb the stresses of the coupling and the acceleration of the train.

<span class="mw-page-title-main">Buffer (rail transport)</span>

A buffer is a part of the buffers and chain coupler system used on the railway systems of many countries, among them most of those in Europe, for attaching railway vehicles together.

Type H Tightlock couplers are a variety of Janney coupler, typically used on North American mainline passenger rail cars. They have mechanical features that reduce slack in normal operation and prevent telescoping in derailments, yet remain compatible with other Janney types used by North American freight railroads.

<span class="mw-page-title-main">Scharfenberg coupler</span> Automatic railway coupling

The Scharfenberg coupler is a commonly used type of fully automatic railway coupling.

<span class="mw-page-title-main">SA3 coupler</span> Automatic coupler for railway use

SA3 couplers or Willison coupler and Russian coupler are railway couplings used primarily in Russia and states influenced by the former Soviet Union, such as Finland, Poland, and Mongolia.

In railroading, slack action is the amount of free movement of one car before it transmits its motion to an adjoining coupled car. This free movement results from the fact that in railroad practice cars are loosely coupled, and the coupling is often combined with a shock-absorbing device, a "draft gear", which, under stress, substantially increases the free movement as the train is started or stopped. Loose coupling is necessary to enable the train to bend around curves and is an aid in starting heavy trains, since the application of the locomotive power to the train operates on each car in the train successively, and the power is thus utilized to start only one car at a time.

The railcar couplers or couplings listed, described, and depicted below are used worldwide on legacy and modern railways. Compatible and similar designs are frequently referred to using widely differing make, brand, regional or nick names, which can make describing standard or typical designs confusing. Dimensions and ratings noted in these articles are usually of nominal or typical components and systems, though standards and practices also vary widely with railway, region, and era. Transition between incompatible coupler types may be accomplished using dual couplings, a coupling adapter or a barrier wagon.

<span class="mw-page-title-main">Barrier vehicle</span> Railway vehicle used to connect two others that have different types of coupling

A barrier vehicle (BV), barrier wagon, match wagon or translator coach is used to convert between non-matching railway coupler types. This allows locomotives to pull railway vehicles or parts of a train with a different type of coupler. A match wagon has an identical dual coupling at both ends.

<span class="mw-page-title-main">C-AKv coupler</span> Railway vehicle coupler

The C-AKv is a fully automatic coupler design, also known as the Faiveley Transpact; it is a hybrid compatible with both buffers and chain couplers and Russian SA3 couplers, intended as an option for the long delayed EU transition to center buffer couplers. C-AKv is an abbreviation of Compact Automatische Kupplung vereinfacht in German, translating to Compact Automatic Coupler simplified in English.

Knuckle couplers are a semi-automatic form of railway coupling that allow rail cars and locomotives to be securely linked together without rail workers having to get between the vehicles.

<span class="mw-page-title-main">Norwegian coupling</span>

A Norwegian coupling or coupler, is a manually operated coupling at each end of some narrow-gauge railway rolling stock. It consists of a central buffer incorporating a hook that drops into a slot in the opposing central buffer. The system is only found on narrow gauge railways with a gauge of 1067 mm or less on which low speeds and train loads allow a simpler system than, for example, knuckle couplers. Norwegian couplings are not particularly strong, and may be supplemented by auxiliary chains. Not all Norwegian couplings are compatible with one another since they vary in height and width. Some may permit a hook from both rail vehicles to be in place; others may be limited to one.

<span class="mw-page-title-main">South African Class 18 2-10-2</span> 1927 design of steam locomotive

The South African Railways Class 18 2-10-2 of 1927 was a steam locomotive.

<span class="mw-page-title-main">South African Class HF 2-8-2+2-8-2</span> 1927 articulated steam locomotive

The South African Railways Class HF 2-8-2+2-8-2 of 1927 was an articulated steam locomotive.

<span class="mw-page-title-main">South African Class U 2-6-2+2-6-2</span> 1927 articulated steam locomotive

The South African Railways Class U 2-6-2+2-6-2 of 1927 was an articulated steam locomotive.

<span class="mw-page-title-main">South African Class GCA 2-6-2+2-6-2</span> 1927 articulated steam locomotive

The South African Railways Class GCA 2-6-2+2-6-2 of 1927 was an articulated steam locomotive.

The South African Railways Class GE 2-8-2+2-8-2 of 1925 was an articulated steam locomotive.

<span class="mw-page-title-main">South African Class GF 4-6-2+2-6-4</span> 1927 articulated steam locomotive

The South African Railways Class GF 4-6-2+2-6-4 of 1927 was an articulated steam locomotive.

From time to time, a railway decides that it needs to upgrade its coupling system from one that is proving unsatisfactory, to another that meets future requirements. This can be done gradually, which can create many problems with transitional incompatibilities, or overnight, which requires much planning.

<span class="mw-page-title-main">Buffers and chain coupler</span> Coupling for railway vehicles

Buffers and chain couplers – also known as "buffers and screw", "screw", and "screwlink" – are the de facto International Union of Railways (UIC) standard railway coupling used in the EU and UK, and on some railways in other parts of the world, such as in South America and India, on older rolling stock. Buffers and chain couplers are an assembly of several devices: buffers, hooks and links, or turnbuckle screws.

<span class="mw-page-title-main">Balance lever coupling</span> Train buffer with couplings

The balance lever coupling, also known as rocking lever coupling or compensating coupling, is a type of central buffer coupling that has found widespread use, especially in narrow-gauge railways. In Switzerland this type of coupling is called a central buffer with two screw couplings, abbreviated to Zp2, or referred to as a central buffer coupling with coupling hooks on the side

References

  1. SAB WABCO C-AK Archived 2009-05-19 at the Wayback Machine
  2. Coupler conversion
  3. "Centre Buffer Coupler of AAR type". Archived from the original on 2014-02-21. Retrieved 2014-04-29.