Duclauxin

Last updated
Duclauxin
Duclauxin.svg
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • InChI=1S/C29H22O11/c1-9-5-14(32)18-20-15(9)23(34)21-25(40-11(3)30)28(20,8-39-27(18)36)24-22(33)12-7-38-26(35)17-13(31)6-10(2)19(16(12)17)29(21,24)37-4/h5-7,21,24-25,31-32H,8H2,1-4H3/t21-,24+,25+,28-,29+/m0/s1
    Key: WBQDAYWQELBEPU-FTAQWXBTSA-N
  • CC1=CC(=C2C3=C1C(=O)[C@H]4[C@H]([C@]3(COC2=O)[C@@H]5[C@]4(C6=C7C(=COC(=O)C7=C(C=C6C)O)C5=O)OC)OC(=O)C)O
Properties
C29H22O11
Molar mass 546.484 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Duclauxin is a chemical compound isolated from Penicillium duclauxi . [1]

Other chemical compounds which are derivatives of duclauxin are known, [2] such as cryptoclauxin, bacillisporins, and talaromycesones. They are sometimes referred to collectively as duclauxins. [3]

Notes

  1. Kuhr, I; Fuska, J; Sedmera, P; Podojil, M; Vokoun, J; Vanĕk, Z (1973). "An antitumor antibiotic produced by Penicillium stipitatum Thom; its identity with duclauxin". The Journal of Antibiotics. 26 (9): 535–6. doi: 10.7164/antibiotics.26.535 . PMID   4799788.
  2. Shahid, Hamza; Cai, Teng; Wang, Yuyang; Zheng, Caiqing; Yang, Yuting; Mao, Ziling; Ding, Ping; Shan, Tijiang (2021). "Duclauxin Derivatives from Fungi and Their Biological Activities". Frontiers in Microbiology. 12. doi: 10.3389/fmicb.2021.766440 . PMC   8727740 .
  3. Gao, Shu-Shan; Zhang, Tao; Garcia-Borràs, Marc; Hung, Yiu-Sun; Billingsley, John M.; Houk, K. N.; Hu, Youcai; Tang, Yi (2018). "Biosynthesis of Heptacyclic Duclauxins Requires Extensive Redox Modifications of the Phenalenone Aromatic Polyketide". Journal of the American Chemical Society. 140 (22): 6991–6997. doi:10.1021/jacs.8b03705. PMC   6309916 . PMID   29741874.

Related Research Articles

<span class="mw-page-title-main">Antibiotic</span> Antimicrobial substance active against bacteria

An antibiotic is a type of antimicrobial substance active against bacteria. It is the most important type of antibacterial agent for fighting bacterial infections, and antibiotic medications are widely used in the treatment and prevention of such infections. They may either kill or inhibit the growth of bacteria. A limited number of antibiotics also possess antiprotozoal activity. Antibiotics are not effective against viruses such as the ones which cause the common cold or influenza; drugs which inhibit growth of viruses are termed antiviral drugs or antivirals rather than antibiotics. They are also not effective against fungi; drugs which inhibit growth of fungi are called antifungal drugs.

<span class="mw-page-title-main">Penicillin</span> Group of antibiotics derived from Penicillium fungi

Penicillins are a group of β-lactam antibiotics originally obtained from Penicillium moulds, principally P. chrysogenum and P. rubens. Most penicillins in clinical use are synthesised by P. chrysogenum using deep tank fermentation and then purified. A number of natural penicillins have been discovered, but only two purified compounds are in clinical use: penicillin G and penicillin V. Penicillins were among the first medications to be effective against many bacterial infections caused by staphylococci and streptococci. They are still widely used today for different bacterial infections, though many types of bacteria have developed resistance following extensive use.

<span class="mw-page-title-main">Beta-lactam antibiotics</span> Class of broad-spectrum antibiotics

β-lactam antibiotics are antibiotics that contain a beta-lactam ring in their chemical structure. This includes penicillin derivatives (penams), cephalosporins and cephamycins (cephems), monobactams, carbapenems and carbacephems. Most β-lactam antibiotics work by inhibiting cell wall biosynthesis in the bacterial organism and are the most widely used group of antibiotics. Until 2003, when measured by sales, more than half of all commercially available antibiotics in use were β-lactam compounds. The first β-lactam antibiotic discovered, penicillin, was isolated from a strain of Penicillium rubens.

<i>Penicillium</i> Genus of fungi

Penicillium is a genus of ascomycetous fungi that is part of the mycobiome of many species and is of major importance in the natural environment, in food spoilage, and in food and drug production.

An antimicrobial is an agent that kills microorganisms (microbicide) or stops their growth. Antimicrobial medicines can be grouped according to the microorganisms they act primarily against. For example, antibiotics are used against bacteria, and antifungals are used against fungi. They can also be classified according to their function. The use of antimicrobial medicines to treat infection is known as antimicrobial chemotherapy, while the use of antimicrobial medicines to prevent infection is known as antimicrobial prophylaxis.

In organic chemistry, polyketides are a class of natural products derived from a precursor molecule consisting of a chain of alternating ketone and methylene groups: [−C(=O)−CH2−]n. First studied in the early 20th century, discovery, biosynthesis, and application of polyketides has evolved. It is a large and diverse group of secondary metabolites caused by its complex biosynthesis which resembles that of fatty acid synthesis. Because of this diversity, polyketides can have various medicinal, agricultural, and industrial applications. Many polyketides are medicinal or exhibit acute toxicity. Biotechnology has enabled discovery of more naturally-occurring polyketides and evolution of new polyketides with novel or improved bioactivity.

<span class="mw-page-title-main">Mevastatin</span> Chemical compound

Mevastatin is a hypolipidemic agent that belongs to the statins class.

In microbiology, the minimum inhibitory concentration (MIC) is the lowest concentration of a chemical, usually a drug, which prevents visible in vitro growth of bacteria or fungi. MIC testing is performed in both diagnostic and drug discovery laboratories.

Pharmaceutical engineering is a branch of engineering focused on discovering, formulating, and manufacturing medication, analytical and quality control processes, and on designing, building, and improving manufacturing sites that produce drugs. It utilizes the fields of chemical engineering, biomedical engineering, pharmaceutical sciences, and industrial engineering.

<i>Penicillium rubens</i> Species of fungus

Penicillium rubens is a species of fungus in the genus Penicillium and was the first species known to produce the antibiotic penicillin. It was first described by Philibert Melchior Joseph Ehi Biourge in 1923. For the discovery of penicillin from this species Alexander Fleming shared the Nobel Prize in Physiology or Medicine in 1945. The original penicillin-producing type has been variously identified as Penicillium rubrum, P. notatum, and P. chrysogenum among others, but genomic comparison and phylogenetic analysis in 2011 resolved that it is P. rubens. It is the best source of penicillins and produces benzylpenicillin (G), phenoxymethylpenicillin (V) and octanoylpenicillin (K). It also produces other important bioactive compounds such as andrastin, chrysogine, fungisporin, roquefortine, and sorbicillins.

<span class="mw-page-title-main">Meleagrin</span> Chemical compound

Meleagrin and its derivatives such as oxaline are bio-active benzylisoquinoline alkaloids made by various species of Penicillium fungi. It is similar to other fungal alkaloids, such as Roquefortine C, which is made as an intermediate in the same biosynthetic pathway.

<span class="mw-page-title-main">Dideoxyverticillin A</span> Chemical compound

Dideoxyverticillin A, also known as (+)-11,11′-dideoxyverticillin A, is a complex epipolythiodioxopiperazine initially isolated from the marine fungus Penicillium sp. in 1999. It has also been found in the marine fungus Bionectriaceae, and belongs to a class of naturally occurring 2,5-diketopiperazines.

Fungal isolates have been researched for decades. Because fungi often exist in thin mycelial monolayers, with no protective shell, immune system, and limited mobility, they have developed the ability to synthesize a variety of unusual compounds for survival. Researchers have discovered fungal isolates with anticancer, antimicrobial, immunomodulatory, and other bio-active properties. The first statins, β-Lactam antibiotics, as well as a few important antifungals, were discovered in fungi.

Medicinal fungi are fungi that contain metabolites or can be induced to produce metabolites through biotechnology to develop prescription drugs. Compounds successfully developed into drugs or under research include antibiotics, anti-cancer drugs, cholesterol and ergosterol synthesis inhibitors, psychotropic drugs, immunosuppressants and fungicides.

Penicillium citrinum is an anamorph, mesophilic fungus species of the genus of Penicillium which produces tanzawaic acid A-D, ACC, Mevastatin, Quinocitrinine A, Quinocitrinine B, and nephrotoxic citrinin. Penicillium citrinum is often found on moldy citrus fruits and occasionally it occurs in tropical spices and cereals. This Penicillium species also causes mortality for the mosquito Culex quinquefasciatus. Because of its mesophilic character, Penicillium citrinum occurs worldwide. The first statin (Mevastatin) was 1970 isolated from this species.

Penicillium decumbens is an anamorph species of the genus of Penicillium which occurs widespread in nature, mainly in subtropical and tropical soil but it also occur in food. Analysis have shown that Penicillium decumbens has antibiotic activity Penicillium decumbens produces the cyclopentenone cyclopenicillone

Penicillium herquei is an anamorph, filamentous species of the genus of Penicillium which produces citreorosein, emodin, hualyzin, herquline B, janthinone, citrinin and duclauxin,.

<span class="mw-page-title-main">Bartolomeo Gosio</span>

Bartolomeo Gosio was an Italian medical scientist. He discovered a toxic fume, eponymously named "Gosio gas", which is produced by microorganisms, that killed many people. He identified the chemical nature of the gas as an arsenic compound (arsine), but incorrectly named it as diethylarsine. He also discovered an antibacterial compound called mycophenolic acid from the mould Penicillium brevicompactum. He demonstrated that the novel compound was effective against the deadly anthrax bacterium, Bacillus anthracis. This was the first antibiotic compound isolated in pure and crystallised form. Though the original compound was abandoned in clinical practice due to its adverse effects, its chemical derivative mycophenolate mofetil became the drug of choice as an immunosuppressant in kidney, heart, and liver transplantations.

Penicillium tardum is an anamorph species of fungus in the genus Penicillium which produces rugulosin.

<span class="mw-page-title-main">Phomoxanthone</span> Class of chemical compounds

The phomoxanthones are a loosely defined class of natural products. The two founding members of this class are phomoxanthone A and phomoxanthone B. Other compounds were later also classified as phomoxanthones, although a unifying nomenclature has not yet been established. The structure of all phomoxanthones is derived from a dimer of two covalently linked tetrahydroxanthones, and they differ mainly in the position of this link as well as in the acetylation status of their hydroxy groups. The phomoxanthones are structurally closely related to other tetrahydroxanthone dimers such as the secalonic acids and the eumitrins. While most phomoxanthones were discovered in fungi of the genus Phomopsis, most notably in the species Phomopsis longicolla, some have also been found in Penicillium sp.