Earle K. Plyler Prize

Last updated

The Earle K. Plyler Prize for Molecular Spectroscopy and Dynamics is a prize that has been awarded annually by the American Physical Society since 1977. The recipient is chosen for "notable contributions to the field of molecular spectroscopy and dynamics". The prize is named after Earle K. Plyler, who was a leading experimenter in the field of infrared spectroscopy; as of 2007 it is valued at $10,000. The prize is currently sponsored by the AIP Journal of Chemical Physics.

Contents

Recipients

Source: American Physical Society

See also

Related Research Articles

<span class="mw-page-title-main">Richard Zare</span> American chemist

Richard Neil Zare is the Marguerite Blake Wilbur Professor in Natural Science and a Professor of Chemistry at Stanford University. Throughout his career, Zare has made a considerable impact in physical chemistry and analytical chemistry, particularly through the development of laser-induced fluorescence (LIF) and the study of chemical reactions at the molecular and nanoscale level. LIF is an extremely sensitive technique with applications ranging from analytical chemistry and molecular biology to astrophysics. One of its applications was the sequencing of the human genome.

<span class="mw-page-title-main">William E. Moerner</span> Nobel prize winning American chemical physicist

William Esco Moerner, also known as W. E. Moerner, is an American physical chemist and chemical physicist with current work in the biophysics and imaging of single molecules. He is credited with achieving the first optical detection and spectroscopy of a single molecule in condensed phases, along with his postdoc, Lothar Kador. Optical study of single molecules has subsequently become a widely used single-molecule experiment in chemistry, physics and biology. In 2014, he was awarded the Nobel Prize in Chemistry.

Kevin K. Lehmann is an American chemist and spectroscopist at the University of Virginia, best known for his work in the area of intramolecular and collisional dynamics, and for his advances in the method of cavity ring down spectroscopy (CRDS).

The Irving Langmuir Prize in Chemical Physics is awarded annually, in even years by the American Chemical Society and in odd years by the American Physical Society. The award is meant to recognize and encourage outstanding interdisciplinary research in chemistry and physics, in the spirit of Irving Langmuir. A nominee must have made an outstanding contribution to chemical physics or physical chemistry within the 10 years preceding the year in which the award is made. The award will be granted without restriction, except that the recipient must be a resident of the United States.

<span class="mw-page-title-main">Richard J. Saykally</span> American chemist

Richard James Saykally is an American chemist. He is currently the Class of 1932 Endowed Professor of Chemistry at the University of California, Berkeley. He has received numerous awards for his research on the molecular characteristics of water and aqueous solutions.

Graham R. Fleming is a professor of chemistry at the University of California, Berkeley and member of the Kavli Energy NanoScience Institute based at UCB.

<span class="mw-page-title-main">Donald Truhlar</span>

Donald Gene Truhlar is an American scientist working in theoretical and computational chemistry and chemical physics with special emphases on quantum mechanics and chemical dynamics.

The EPS CMD Europhysics Prize is awarded since 1975 by the Condensed Matter Division of the European Physical Society, in recognition of recent work by one or more individuals, for scientific excellence in the area of condensed matter physics. It is one of Europe’s most prestigious prizes in the field of condensed matter physics. Several laureates of the EPS CMD Europhysics Prize also received a Nobel Prize in Physics or Chemistry.

<span class="mw-page-title-main">Lester Andrews</span> American chemist

William Lester Self Andrews is an American chemist who makes contributions to the ongoing development of quantum chemistry of metallic complexes. He is the Professor Emeritus of Chemistry at the University of Virginia. He won the Earle K. Plyler Prize for Molecular Spectroscopy in 2010 for "vibrational spectroscopy in cryogenic matrices that combined with quantum calculations, has led to the identification and characterization of many molecules, ions, and complexes across the periodic table".

Earle Keith Plyler, was an American physicist and an important pioneer of infrared spectroscopy and molecular spectroscopy. He is the namesake of the "Earle K. Plyler Prize" of the American Physical Society.

Robert Tycko is an American biophysicist whose research primarily involves solid state NMR, including the development of new methods and applications to various areas of physics, chemistry, and biology. He is a member of the Laboratory of Chemical Physics in the National Institute of Diabetes and Digestive and Kidney Diseases at the National Institutes of Health in Bethesda, Maryland, USA. He was formerly a member of the Physical Chemistry Research and Materials Chemistry Research departments of AT&T Bell Labs in Murray Hill, New Jersey. His work has contributed to our understanding of geometric phases in spectroscopy, physical properties of fullerenes, skyrmions in 2D electron systems, protein folding, and amyloid fibrils associated with Alzheimer’s disease and prions.

Takeshi Oka,, is a Japanese-American spectroscopist and astronomer specializing in the field of galactic astronomy, known as a pioneer of astrochemistry and the co-discoverer of interstellar trihydrogen cation . He is now R.A. Milliken Distinguished Service Emeritus Professor, Departments of Astronomy and Astrophysics, Chemistry; Enrico Fermi Institute; and the College of University of Chicago.

Shaul Mukamel is a chemist and physicist, currently serving as a Distinguished Professor at the University of California, Irvine. He is known for his works in Non linear Optics and Spectroscopy.

David Wixon Pratt is an American physicist, Professor of Chemistry at the University of Pittsburgh.

<span class="mw-page-title-main">Albert Stolow</span> Canadian molecular photonics professor

Albert Stolow is a Canadian physicist. He is the Canada Research Chair in Molecular Photonics, full professor of chemistry & biomolecular sciences and of physics, and a member of the Ottawa Institute for Systems Biology at the University of Ottawa. He is the founder and an ongoing member of the Molecular Photonics Group at the National Research Council of Canada. He is adjunct professor of Chemistry and of Physics at Queen's University in Kingston, and a Graduate Faculty Scholar in the department of physics, University of Central Florida and a Fellow of the Max-Planck-uOttawa Centre for Extreme and Quantum Photonics. In 2008, he was elected a Fellow in the American Physical Society, nominated by its Division of Chemical Physics in 2008, for contributions to ultrafast laser science as applied to molecular physics, including time-resolved studies of non-adiabatic dynamics in excited molecules, non-perturbative quantum control of molecular dynamics, and dynamics of polyatomic molecules in strong laser fields. In 2008, Stolow won the Keith Laidler Award of the Canadian Society for Chemistry, for a distinguished contribution to the field of physical chemistry, recognizing early career achievement. In 2009, he was elected a Fellow of the Optical Society of America for the application of ultrafast optical techniques to molecular dynamics and control, in particular, studies of molecules in strong laser fields and the development of new methods of optical quantum control. In 2013, he was awarded the Queen Elizabeth II Diamond Jubilee Medal (Canada). In 2017, Stolow was awarded the Earle K. Plyler Prize for Molecular Spectroscopy and Dynamics of the American Physical Society for the development of methods for probing and controlling ultrafast dynamics in polyatomic molecules, including time-resolved photoelectron spectroscopy and imaging, strong field molecular ionization, and dynamic Stark quantum control. In 2018, Stolow was awarded the John C. Polanyi Award of the Canadian Society for Chemistry “for excellence by a scientist carrying out research in Canada in physical, theoretical or computational chemistry or chemical physics”. In 2020, he became Chair of the Division of Chemical Physics of the American Physical Society. His group's research interests include ultrafast molecular dynamics and quantum control, time-resolved photoelectron spectroscopy and imaging, strong field & attosecond physics of polyatomic molecules, and coherent non-linear optical microscopy of live cells/tissues, materials and geological samples. In 2020, Stolow launched a major new high power ultrafast laser facility at the University of Ottawa producing high energy, phase-controlled few-cycle pulses of 2 micron wavelength at 10 kHz repetition rate. These are used for High Harmonic Generation to produce bright ultrafast Soft X-ray pulses for a new Ultrafast Xray Science Laboratory.

Jon Torger Hougen was an American spectroscopist.

<span class="mw-page-title-main">Majed Chergui</span> Swiss and French physicist

Majed Chergui is a Swiss and French physicist specialized in ultrafast dynamics of light-induced processes. He is a professor at EPFL, head of the Laboratory of Ultrafast Spectroscopy at EPFL's School of Basic Sciences, and founding director of the Lausanne Centre for Ultrafast Science (LACUS).

<span class="mw-page-title-main">James Kay Graham Watson</span> Molecular spectroscopist (died 2020)

Jim Watson, FRS, who published under the name J.K.G. Watson, was a molecular spectroscopist most well known for the development of the widely used molecular Hamiltonians named after him. These Hamiltonians are used to describe the quantum dynamics of molecules.

Richard P. Van Duyne (1945–2019) was an American chemist and professor of chemistry at Northwestern University. He was known for his development of surface-enhanced Raman scattering (SERS) and nanoplasmonics initially for analytical and physical chemistry, but the high sensitivity of these methods resulted in numerous applications in chemistry, material science, physics, and medicine. He definitively demonstrated the single molecule sensitivity of SERS.

References