Effective range

Last updated

Effective range is a term with several definitions depending upon context.

Contents

Distance

Effective range may describe a distance between two points where one point is subject to an energy release at the other point. The source, receiver, and conditions between the two points must be specified to define an effective range. Effective range may represent the maximum distance at which a measuring device or receiver will predictably respond to an energy release of specified magnitude. Alternatively, effective range may be the maximum distance at which the energy released from a specified device will cause the desired effect on a target receiver. Angular dispersion may be significant to effectiveness for asymmetrical energy propagation toward small targets.

Weapons

The following definition has been attributed to the United States Department of Defense: The maximum distance at which a weapon may be expected to be accurate and achieve the desired effect. [1] Accuracy is ambiguous in the absence of a specified hit probability per unit of ammunition; and for any given weapon, the desired effect could be interpreted differently depending upon the target. Subjective interpretation of these variables has caused endless and heated debate for more than a century. [2]

With the addition of clinometers fixed machine gun squads could set long ranges and deliver plunging fire or indirect fire at more than 2,500 m (2,730 yd). This indirect firing method exploits the maximal effective range, that is defined by the maximum range of a small-arms projectile while still maintaining the minimum kinetic energy required to put unprotected personnel out of action, which is generally believed to be 15 kilogram-meters (147 J / 108 ft⋅lbf). [3] Advanced planned and unplanned map and range table predicted support/harassment firing methods developed during World War I like plunging fire or indirect fire were not as commonly used by machine gunners during World War II and later as they were during World War I. [4]

Vehicles

In a broader context, effective range describes the distance a vehicle (including weapon launch platforms like a ship or aircraft) may be expected to deliver a specified payload from a base or refueling point. [5]

Statistics

In statistics, range refers to the difference between the largest and smallest value of a set of quantified observations. Some observers consider it appropriate to remove unusually high or low outlying values to narrow the observed range to an effective range of the quantity being observed. Inferences based on effective range are of somewhat doubtful value if subjective judgement is used to determine which observations are discarded. [6]

Nuclear physics

In nuclear physics research, effective range is a physical parameter in the dimension of length to characterize an effective scattering square well potential. It is related to the scattering phase shift by,

. [7]

where is defined by the relation of deuteron binding energy .

In the limit of zero energy (), the scattering length can be related to effective length with .

Related Research Articles

<span class="mw-page-title-main">Adiabatic process</span> Thermodynamic process in which no mass or heat is exchanged with surroundings

In thermodynamics, an adiabatic process is a type of thermodynamic process that occurs without transferring heat or mass between the thermodynamic system and its environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work. As a key concept in thermodynamics, the adiabatic process supports the theory that explains the first law of thermodynamics.

<span class="mw-page-title-main">Kinetic energy</span> Energy of a moving physical body

In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes. The same amount of work is done by the body when decelerating from its current speed to a state of rest. Formally, a kinetic energy is any term in a system's Lagrangian which includes a derivative with respect to time and the second term in a Taylor expansion of a particle's relativistic energy.

<span class="mw-page-title-main">Transmission line</span> Cable or other structure for carrying radio waves

In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmission must be taken into account. This applies especially to radio-frequency engineering because the short wavelengths mean that wave phenomena arise over very short distances. However, the theory of transmission lines was historically developed to explain phenomena on very long telegraph lines, especially submarine telegraph cables.

<span class="mw-page-title-main">Compton scattering</span> Scattering of photons off charged particles

Compton scattering discovered by Arthur Holly Compton, is the scattering of a high frequency photon after an interaction with a charged particle, usually an electron. It results in a decrease in energy of the photon, called the Compton effect. Part of the energy of the photon is transferred to the recoiling particle. Inverse Compton scattering has the opposite effect, occurring when a high-energy charged particle transfers part of its energy to a photon, resulting in an increase in energy of the photon.

<span class="mw-page-title-main">Ionization</span> Process by which atoms or molecules acquire charge by gaining or losing electrons

Ionization is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule is called an ion. Ionization can result from the loss of an electron after collisions with subatomic particles, collisions with other atoms, molecules and ions, or through the interaction with electromagnetic radiation. Heterolytic bond cleavage and heterolytic substitution reactions can result in the formation of ion pairs. Ionization can occur through radioactive decay by the internal conversion process, in which an excited nucleus transfers its energy to one of the inner-shell electrons causing it to be ejected.

The nuclear Overhauser effect (NOE) is the transfer of nuclear spin polarization from one population of spin-active nuclei to another via cross-relaxation. A phenomenological definition of the NOE in nuclear magnetic resonance spectroscopy (NMR) is the change in the integrated intensity of one NMR resonance that occurs when another is saturated by irradiation with an RF field. The change in resonance intensity of a nucleus is a consequence of the nucleus being close in space to those directly affected by the RF perturbation.

<span class="mw-page-title-main">Digamma function</span> Mathematical function

In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:

<span class="mw-page-title-main">Klein–Nishina formula</span> Electron-photon scattering cross section

In particle physics, the Klein–Nishina formula gives the differential cross section of photons scattered from a single free electron, calculated in the lowest order of quantum electrodynamics. It was first derived in 1928 by Oskar Klein and Yoshio Nishina, constituting one of the first successful applications of the Dirac equation. The formula describes both the Thomson scattering of low energy photons and the Compton scattering of high energy photons, showing that the total cross section and expected deflection angle decrease with increasing photon energy.

<span class="mw-page-title-main">Bulk modulus</span> Resistance of a material to uniform pressure

The bulk modulus of a substance is a measure of the resistance of a substance to bulk compression. It is defined as the ratio of the infinitesimal pressure increase to the resulting relative decrease of the volume.

<span class="mw-page-title-main">Radiation zone</span>

A radiation zone, or radiative region is a layer of a star's interior where energy is primarily transported toward the exterior by means of radiative diffusion and thermal conduction, rather than by convection. Energy travels through the radiation zone in the form of electromagnetic radiation as photons.

In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.

In mathematics, the discrete Laplace operator is an analog of the continuous Laplace operator, defined so that it has meaning on a graph or a discrete grid. For the case of a finite-dimensional graph, the discrete Laplace operator is more commonly called the Laplacian matrix.

The relativistic Breit–Wigner distribution is a continuous probability distribution with the following probability density function,

In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non-quantum mechanical description of a system of particles, or of a fluid, in cases where the velocities of moving objects are comparable to the speed of light c. As a result, classical mechanics is extended correctly to particles traveling at high velocities and energies, and provides a consistent inclusion of electromagnetism with the mechanics of particles. This was not possible in Galilean relativity, where it would be permitted for particles and light to travel at any speed, including faster than light. The foundations of relativistic mechanics are the postulates of special relativity and general relativity. The unification of SR with quantum mechanics is relativistic quantum mechanics, while attempts for that of GR is quantum gravity, an unsolved problem in physics.

The plasma parameter is a dimensionless number, denoted by capital Lambda, Λ. The plasma parameter is usually interpreted to be the argument of the Coulomb logarithm, which is the ratio of the maximum impact parameter to the classical distance of closest approach in Coulomb scattering. In this case, the plasma parameter is given by:

Intrabeam scattering (IBS) is an effect in accelerator physics where collisions between particles couple the beam emittance in all three dimensions. This generally causes the beam size to grow. In proton accelerators, intrabeam scattering causes the beam to grow slowly over a period of several hours. This limits the luminosity lifetime. In circular lepton accelerators, intrabeam scattering is counteracted by radiation damping, resulting in a new equilibrium beam emittance with a relaxation time on the order of milliseconds. Intrabeam scattering creates an inverse relationship between the smallness of the beam and the number of particles it contains, therefore limiting luminosity.

In mathematics, the Möbius energy of a knot is a particular knot energy, i.e., a functional on the space of knots. It was discovered by Jun O'Hara, who demonstrated that the energy blows up as the knot's strands get close to one another. This is a useful property because it prevents self-intersection and ensures the result under gradient descent is of the same knot type.

Solution of triangles is the main trigonometric problem of finding the characteristics of a triangle, when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.

<span class="mw-page-title-main">PERT distribution</span>

In probability and statistics, the PERT distribution is a family of continuous probability distributions defined by the minimum (a), most likely (b) and maximum (c) values that a variable can take. It is a transformation of the four-parameter beta distribution with an additional assumption that its expected value is

References

  1. "maximum effective range Definition (US DoD)". Military Factory. Retrieved 12 March 2019.
  2. Dodd, Mead (1916). New International Encyclopedia. Vol. 19. Princeton University. p. 542.
  3. Kjellgren, G. L. M. "The Practical Range of Small Arms" (PDF). The American Rifleman. pp. 40–44. Archived (PDF) from the original on 5 March 2015.
  4. "How The Machine Gun Changed Combat During World War I". Norwich University Online.
  5. "effective range". Merriam-Webster. Retrieved 17 March 2019.
  6. Marriott, F.H.C. "Effective Range". Glossary of Statistical Terms. Organisation for Economic Co-operation and Development. Retrieved 17 March 2019.
  7. Bethe, H. A. (1949-07-01). "Theory of the Effective Range in Nuclear Scattering". Physical Review. American Physical Society (APS). 76 (1): 38–50. Bibcode:1949PhRv...76...38B. doi:10.1103/physrev.76.38. ISSN   0031-899X.