Effector cell

Last updated

An effector cell is any of various types of cell that actively responds to a stimulus and effects some change (brings it about).

Contents

Examples of effector cells include:

Cytokine-induced killer cells as effector cells

As an effector cell, cytokine-induced killer cells can recognize infected or malignant cells even when antibodies and major histocompatibility complex (MHC) are not available. This allows a quick immune reaction to take place. Cytokine-Induced killer (CIK) cells are important because harmful cells that do not contain MHC cannot be traced and removed by other immune cells. CIK cells are being studied intensely as a possible therapy treatment for cancer and other types of viral infections. CIK cells respond to lymphokines by lysing tumorous cells that are resistant to NK cells or LAK cell activity. CIK cells show a large amount of cytotoxic potential against various types of tumors. Side effects of CIK cells are also considered very minor. In a few cases, CIK cell treatment lead to the complete disappearance of tumor burdens, extended periods of survival, and improved quality of life, even if the cancerous tumor cells were in advanced stages. At the moment, the exact mechanism of tumor recognition in CIK cells are not completely understood.

Fibroblast as effector cells

Fibroblast are types of cells that form the extracellular matrix and collagen. Fibroblasts are the most common connective tissues in animals. They have branched cytoplasm surrounding their nucleus, which contain two or more nucleoli. Fibroblasts play a key role when responding to tissue injury. They initiate inflammation in the presence of foreign microorganisms. Receptors found on the surface of fibroblasts regulate hematopoietic cells, start chemokine synthesis, and provide a pathway that allows immune cells to regulate the fibroblast cells. Fibroblasts are also known as tumor mediators. They suppress the tumor as an inflammatory response.

Microglia as effector cells

Microglia are located throughout the brain and spinal cord. They are the first line of immune defense in the CNS. Microglia are of utmost importance in brain maintenance. They constantly search around the CNS for any type of plaques, damaged neurons, and infections. Microglia are extremely sensitive forms of effector cells, because they must be alert enough to address possible life-threatening damage. This sensitivity is caused by unique forms of potassium channels. Microglia must always be capable of recognizing any foreign bodies, engulf them, and activate T-cells. Microglia can be found under a variety of different shapes and sizes, based on the location where they are found. The vast amount of shapes are required for the microglia to carry out their primary function. Microglia are distinguishable from macrophages because of their ability to transform, which allows them to protect the CNS under relatively short amounts of time. Microglia take on a unique phenotype when they detect local chemical signals. Microglia have a variety of different functions required to maintain homeostasis in the host body.

Mast cells as effector cells

A mast cell is a white blood cell. Mast cells are protective cells that are involved in wound healing and blood-brain barrier function. Mast cells are very similar to basophils, and mast cells once were mistaken for them. It is proven that the two cells have different lineages. [5] Mast cells respond to pathogenic parasites through Immunoglobin E signaling. These cells play a role in the inflammatory process. They can either release selective amounts or rapid amounts of compounds that induce inflammation from granules. Mast cells are inactive during allergic reactions unless an allergen binds to Immunoglobin E.

Related Research Articles

Immune system Biological system protecting an organism against disease

The immune system is a network of biological processes that protects an organism from diseases. It detects and responds to a wide variety of pathogens, from viruses to parasitic worms, as well as cancer cells and objects such as wood splinters, distinguishing them from the organism's own healthy tissue. Many species have two major subsystems of the immune system. The innate immune system provides a preconfigured response to broad groups of situations and stimuli. The adaptive immune system provides a tailored response to each stimulus by learning to recognize molecules it has previously encountered. Both use molecules and cells to perform their functions.

T cell White blood cells of the immune system

A T cell is a type of lymphocyte. T cells are one of the important white blood cells of the immune system and play a central role in the adaptive immune response. T cells can be distinguished from other lymphocytes by the presence of a T-cell receptor (TCR) on their cell surface.

Cytotoxic T cell T cell that kills infected, damaged or cancerous cells

A cytotoxic T cell (also known as TC, cytotoxic T lymphocyte, CTL, T-killer cell, cytolytic T cell, CD8+ T-cell or killer T cell) is a T lymphocyte (a type of white blood cell) that kills cancer cells, cells that are infected (particularly with viruses), or cells that are damaged in other ways.

T helper cell Type of immune cell

The T helper cells (Th cells), also known as CD4+ cells or CD4-positive cells, are a type of T cell that play an important role in the immune system, particularly in the adaptive immune system. As their name suggests, they "help" the activity of other immune cells by releasing cytokines, small protein mediators that alter the behavior of target cells that express receptors for those cytokines. These cells help to polarize the immune response into the appropriate kind depending on the nature of the immunological insult (virus vs. extracellular bacterium vs. intracellular bacterium vs. helminth vs. fungus vs. protist). They are generally considered essential in B cell antibody class switching, breaking cross-tolerance in dendritic cells, in the activation and growth of cytotoxic T cells, and in maximizing bactericidal activity of phagocytes such as macrophages and neutrophils.

Natural killer cell Type of cytotoxic lymphocyte

Natural killer cells, also known as NK cells or large granular lymphocytes (LGL), are a type of cytotoxic lymphocyte critical to the innate immune system that belong to the rapidly expanding family of innate lymphoid cells (ILC) and represent 5–20% of all circulating lymphocytes in humans. The role of NK cells is analogous to that of cytotoxic T cells in the vertebrate adaptive immune response. NK cells provide rapid responses to virus-infected cell and other intracellular pathogens acting at around 3 days after infection, and respond to tumor formation. Typically, immune cells detect the major histocompatibility complex (MHC) presented on infected cell surfaces, triggering cytokine release, causing the death of the infected cell by lysis or apoptosis. NK cells are unique, however, as they have the ability to recognize and kill stressed cells in the absence of antibodies and MHC, allowing for a much faster immune reaction. They were named "natural killers" because of the notion that they do not require activation to kill cells that are missing "self" markers of MHC class 1. This role is especially important because harmful cells that are missing MHC I markers cannot be detected and destroyed by other immune cells, such as T lymphocyte cells.

Lymphocyte Subtype of white blood cell

A lymphocyte is a type of white blood cell in the immune system of jawed vertebrates. Lymphocytes include natural killer cells, T cells, and B cells. They are the main type of cell found in lymph, which prompted the name "lymphocyte".

Transplant rejection Rejection of transplanted tissue by the recipients immune system

Transplant rejection occurs when transplanted tissue is rejected by the recipient's immune system, which destroys the transplanted tissue. Transplant rejection can be lessened by determining the molecular similitude between donor and recipient and by use of immunosuppressant drugs after transplant.

Cell-mediated immunity is an immune response that does not involve antibodies. Rather, cell-mediated immunity is the activation of phagocytes, antigen-specific cytotoxic T-lymphocytes, and the release of various cytokines in response to an antigen.

Microglia Glial cell located throughout the brain and spinal cord

Microglia are a type of neuroglia located throughout the brain and spinal cord. Microglia account for 10–15% of all cells found within the brain. As the resident macrophage cells, they act as the first and main form of active immune defense in the central nervous system (CNS). Microglia are distributed in large non-overlapping regions throughout the CNS. Microglia are key cells in overall brain maintenance—they are constantly scavenging the CNS for plaques, damaged or unnecessary neurons and synapses, and infectious agents. Since these processes must be efficient to prevent potentially fatal damage, microglia are extremely sensitive to even small pathological changes in the CNS. This sensitivity is achieved in part by the presence of unique potassium channels that respond to even small changes in extracellular potassium. Recent evidence shows that microglia are also key players in the sustainment of normal brain functions under healthy conditions. Microglia also constantly monitor neuronal functions through direct somatic contacts and exert neuroprotective effects when needed.

Alloimmunity is an immune response to nonself antigens from members of the same species, which are called alloantigens or isoantigens. Two major types of alloantigens are blood group antigens and histocompatibility antigens. In alloimmunity, the body creates antibodies against the alloantigens, attacking transfused blood, allotransplanted tissue, and even the fetus in some cases. Alloimmune (isoimmune) response results in graft rejection, which is manifested as deterioration or complete loss of graft function. In contrast, autoimmunity is an immune response to the self's own antigens. Alloimmunization (isoimmunization) is the process of becoming alloimmune, that is, developing the relevant antibodies for the first time.

Neuroimmune system

The neuroimmune system is a system of structures and processes involving the biochemical and electrophysiological interactions between the nervous system and immune system which protect neurons from pathogens. It serves to protect neurons against disease by maintaining selectively permeable barriers, mediating neuroinflammation and wound healing in damaged neurons, and mobilizing host defenses against pathogens.

Antibody-dependent cellular cytotoxicity Cell-mediated killing of other cells mediated by antibodies

Antibody-dependent cellular cytotoxicity (ADCC), also referred to as antibody-dependent cell-mediated cytotoxicity, is a mechanism of cell-mediated immune defense whereby an effector cell of the immune system actively lyses a target cell, whose membrane-surface antigens have been bound by specific antibodies. It is one of the mechanisms through which antibodies, as part of the humoral immune response, can act to limit and contain infection.

Gliosis is a nonspecific reactive change of glial cells in response to damage to the central nervous system (CNS). In most cases, gliosis involves the proliferation or hypertrophy of several different types of glial cells, including astrocytes, microglia, and oligodendrocytes. In its most extreme form, the proliferation associated with gliosis leads to the formation of a glial scar.

Certain sites of the human body have immune privilege, meaning they are able to tolerate the introduction of antigens without eliciting an inflammatory immune response. Tissue grafts are normally recognised as foreign antigen by the body and attacked by the immune system. However, in immune privileged sites, tissue grafts can survive for extended periods of time without rejection occurring. Immunologically privileged sites include:

Gamma delta T cells are T cells that have a distinctive T-cell receptor (TCR) on their surface. Most T cells are αβ T cells with TCR composed of two glycoprotein chains called α (alpha) and β (beta) TCR chains. In contrast, gamma delta (γδ) T cells have a TCR that is made up of one γ (gamma) chain and one δ (delta) chain. This group of T cells is usually less common than αβ T cells, but are at their highest abundance in the gut mucosa, within a population of lymphocytes known as intraepithelial lymphocytes (IELs).

NCR3

Natural cytotoxicity triggering receptor 3 is a protein that in humans is encoded by the NCR3 gene. NCR3 has also been designated as CD337 and as NKp30. NCR3 belongs to the family of NCR membrane receptors together with NCR1 (NKp46) and NCR2 (NKp44).

Protective autoimmunity is a condition in which cells of the adaptive immune system contribute to maintenance of the functional integrity of a tissue, or facilitate its repair following an insult. The term ‘protective autoimmunity’ was coined by Prof. Michal Schwartz of the Weizmann Institute of Science (Israel), whose pioneering studies were the first to demonstrate that autoimmune T lymphocytes can have a beneficial role in repair, following an injury to the central nervous system (CNS). Most of the studies on the phenomenon of protective autoimmunity were conducted in experimental settings of various CNS pathologies and thus reside within the scientific discipline of neuroimmunology.

Natural killer T (NKT) cells are a heterogeneous group of T cells that share properties of both T cells and natural killer cells. Many of these cells recognize the non-polymorphic CD1d molecule, an antigen-presenting molecule that binds self and foreign lipids and glycolipids. They constitute only approximately 1% of all peripheral blood T cells. Natural killer T cells should neither be confused with natural killer cells nor killer T cells.

Neuroinflammation is inflammation of the nervous tissue. It may be initiated in response to a variety of cues, including infection, traumatic brain injury, toxic metabolites, or autoimmunity. In the central nervous system (CNS), including the brain and spinal cord, microglia are the resident innate immune cells that are activated in response to these cues. The CNS is typically an immunologically privileged site because peripheral immune cells are generally blocked by the blood–brain barrier (BBB), a specialized structure composed of astrocytes and endothelial cells. However, circulating peripheral immune cells may surpass a compromised BBB and encounter neurons and glial cells expressing major histocompatibility complex molecules, perpetuating the immune response. Although the response is initiated to protect the central nervous system from the infectious agent, the effect may be toxic and widespread inflammation as well as further migration of leukocytes through the blood–brain barrier.

Cytokine-induced killer cells (CIK) cells are a group of immune effector cells featuring a mixed T- and natural killer (NK) cell-like phenotype. They are generated by ex vivo incubation of human peripheral blood mononuclear cells (PBMC) or cord blood mononuclear cells with interferon-gamma (IFN-γ), anti-CD3 antibody, recombinant human interleukin (IL)-1 and recombinant human interleukin (IL)-2.

References

  1. IG, Schmidt-Wolf; P, Lefterova; BA, Mehta; LP, Fernandez; D, Huhn; KG, Blume; IL, Weissman; RS, Negrin (1993-12-01). "Phenotypic characterization and identification of effector cells involved in tumor cell recognition of cytokine-induced killer cells". Experimental Hematology. 21 (13): 1673–9. ISSN   0301-472X. PMID   7694868.
  2. Krivit, W (July 1995). "Microglia: The effector cell for reconstitution of the central nervous system following bone marrow transplantation for lysosomal and peroxisomal storage diseases". Cell Transplantation. 4 (4): 385–392. doi:10.1016/0963-6897(95)00021-O. PMID   7582569.
  3. Lorenz, H. Peter; Lin, Richard Y.; Longaker, Michael T.; Whitby, David J.; Adzick, N. Scott (November 1995). "The fetal fibroblast: the effector cell of scarless fetal skin repair". Plastic and Reconstructive Surgery. 96 (6): 1251–9, discussion 1260–1. doi:10.1097/00006534-199511000-00001. PMID   7480221. S2CID   38388476.
  4. Holgate, S (February 1986). "The mast cell as a primary effector cell in the pathegenesis of asthma". Journal of Allergy and Clinical Immunology. 77 (2): 274–282. doi:10.1016/S0091-6749(86)80104-X. PMID   2418090.
  5. Franco, Christopher B.; Chen, Ching-Cheng; Drukker, Micha; Weissman, Irving L.; Galli, Stephen J. (2010-04-02). "Distinguishing mast cell and granulocyte differentiation at the single cell level". Cell Stem Cell. 6 (4): 361–368. doi:10.1016/j.stem.2010.02.013. ISSN   1934-5909. PMC   2852254 . PMID   20362540.