Efimov state

Last updated

The Efimov effect is an effect in the quantum mechanics of few-body systems predicted by the Russian theoretical physicist V. N. Efimov [1] [2] in 1970. Efimov's effect is where three identical bosons interact, with the prediction of an infinite series of excited three-body energy levels when a two-body state is exactly at the dissociation threshold. One corollary is that there exist bound states (called Efimov states) of three bosons even if the two-particle attraction is too weak to allow two bosons to form a pair. A (three-particle) Efimov state, where the (two-body) sub-systems are unbound, is often depicted symbolically by the Borromean rings. This means that if one of the particles is removed, the remaining two fall apart. In this case, the Efimov state is also called a Borromean state.

Contents

Theory

A computer depiction of the quantum effect predicted by Efimov, said to resemble "Russian nesting dolls". Visual Representation of Efimov state - scaling.gif
A computer depiction of the quantum effect predicted by Efimov, said to resemble "Russian nesting dolls".

Pair interactions among three identical bosons will approach "Resonance (particle physics)" as the binding energy of some two-body bound state approaches zero, or equivalently, the s-wave scattering length of the state becomes infinite. In this limit, Efimov predicted that the three-body spectrum exhibits an infinite sequence of bound states whose scattering lengths and binding energies each form a geometric progression

where the common ratio

is a universal constant (OEIS OEIS:  A242978 ). [1]

Here

is the order of the imaginary-order modified Bessel function [3] of the second kind that describes the radial dependence of the wavefunction. By virtue of the resonance-determined boundary conditions, this is the unique positive value of satisfying the transcendental equation

The geometric progression of the energy levels of Efimov states is an example of a emergent discrete scaling symmetry. This phenomenon, exhibiting a renormalization group limit cycle, is closely related to the scale invariance of the form of the quantum mechanical potential of the system. [4]

Experimental results

In 2005, the research group of Rudolf Grimm and Hanns-Christoph Nägerl at the Institute for Experimental Physics at the University of Innsbruck experimentally confirmed the existence of such a state for the first time in an ultracold gas of caesium atoms. In 2006, they published their findings in the scientific journal Nature. [5] Further experimental support for the existence of the Efimov state has been given recently by independent groups. [6] Almost 40 years after Efimov's purely theoretical prediction, the characteristic periodic behavior of the states has been confirmed. [7] [8]

The most accurate experimental value of the scaling factor of the states has been determined by the experimental group of Rudolf Grimm at Innsbruck University as [9]


Interest in the "universal phenomena" of cold atomic gases is still growing. [10] [11] The discipline of universality in cold atomic gases near the Efimov states is sometimes referred to as "Efimov physics". [12]

The experimental groups of Cheng Chin of the University of Chicago and Matthias Weidemüller of the University of Heidelberg have observed Efimov states in an ultracold mixture of lithium and caesium atoms, [13] [14] extending Efimov's original picture of three identical bosons.

An Efimov state existing as an excited state of a helium trimer was observed in an experiment in 2015. [15]

Usage

The Efimov states are independent of the underlying physical interaction and can in principle be observed in all quantum mechanical systems (i.e. molecular, atomic, and nuclear). The states are very special because of their "non-classical" nature: The size of each three-particle Efimov state is much larger than the force-range between the individual particle pairs. This means that the state is purely quantum mechanical. Similar phenomena are observed in two-neutron halo-nuclei, such as lithium-11; these are called Borromean nuclei. (Halo nuclei could be seen as special Efimov states, depending on the subtle definitions.)

See also

Related Research Articles

<span class="mw-page-title-main">Bose–Einstein condensate</span> State of matter

In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low densities is cooled to temperatures very close to absolute zero, i.e., 0 K. Under such conditions, a large fraction of bosons occupy the lowest quantum state, at which microscopic quantum-mechanical phenomena, particularly wavefunction interference, become apparent macroscopically. More generally, condensation refers to the appearance of macroscopic occupation of one or several states: for example, in BCS theory, a superconductor is a condensate of Cooper pairs. As such, condensation can be associated with phase transition, and the macroscopic occupation of the state is the order parameter.

<span class="mw-page-title-main">Quantum entanglement</span> Correlation between quantum systems

Quantum entanglement is the phenomenon of a group of particles being generated, interacting, or sharing spatial proximity in such a way that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.

<span class="mw-page-title-main">Standard Model</span> Theory of forces and subatomic particles

The Standard Model of particle physics is the theory describing three of the four known fundamental forces in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.

<span class="mw-page-title-main">Charm quark</span> Type of quark

The charm quark, charmed quark, or c quark is an elementary particle found in composite subatomic particles called hadrons such as the J/psi meson and the charmed baryons created in particle accelerator collisions. Several bosons, including the W and Z bosons and the Higgs boson, can decay into charm quarks. All charm quarks carry charm, a quantum number. This second-generation particle is the third-most-massive quark, with a mass of 1.27±0.02 GeV/c2 as measured in 2022, and a charge of +2/3 e.

In physics, an anyon is a type of quasiparticle so far observed only in two-dimensional systems. In three-dimensional systems, only two kinds of elementary particles are seen: fermions and bosons. Anyons have statistical properties intermediate between fermions and bosons. In general, the operation of exchanging two identical particles, although it may cause a global phase shift, cannot affect observables. Anyons are generally classified as abelian or non-abelian. Abelian anyons, detected by two experiments in 2020, play a major role in the fractional quantum Hall effect.

<span class="mw-page-title-main">Quantum Zeno effect</span> Quantum measurement phenomenon

The quantum Zeno effect is a feature of quantum-mechanical systems allowing a particle's time evolution to be slowed down by measuring it frequently enough with respect to some chosen measurement setting.

A bound state is a composite of two or more fundamental building blocks, such as particles, atoms, or bodies, that behaves as a single object and in which energy is required to split them.

<span class="mw-page-title-main">Hierarchy problem</span> Unsolved problem in physics

In theoretical physics, the hierarchy problem is the problem concerning the large discrepancy between aspects of the weak force and gravity. There is no scientific consensus on why, for example, the weak force is 1024 times stronger than gravity.

In quantum physics, Regge theory is the study of the analytic properties of scattering as a function of angular momentum, where the angular momentum is not restricted to be an integer multiple of ħ but is allowed to take any complex value. The nonrelativistic theory was developed by Tullio Regge in 1959.

In physics, a Feshbach resonance can occur upon collision of two slow atoms, when they temporarily stick together forming an unstable compound with short lifetime. It is a feature of many-body systems in which a bound state is achieved if the coupling(s) between at least one internal degree of freedom and the reaction coordinates, which lead to dissociation, vanish. The opposite situation, when a bound state is not formed, is a shape resonance. It is named after Herman Feshbach, a physicist at MIT.

<span class="mw-page-title-main">Rudolf Grimm</span> Austrian physicist (born 1961)

Rudolf Grimm is an experimental physicist from Austria. His work centres on ultracold atoms and quantum gases. He was the first scientist worldwide who, with his team, succeeded in realizing a Bose–Einstein condensation of non-polar molecules.

<span class="mw-page-title-main">Belle experiment</span> 1999-2010 Japanese particle physics experiment

The Belle experiment was a particle physics experiment conducted by the Belle Collaboration, an international collaboration of more than 400 physicists and engineers, at the High Energy Accelerator Research Organisation (KEK) in Tsukuba, Ibaraki Prefecture, Japan. The experiment ran from 1999 to 2010.

<span class="mw-page-title-main">Optical lattice</span> Atomic-scale structure formed through the Stark shift by opposing beams of light

An optical lattice is formed by the interference of counter-propagating laser beams, creating a spatially periodic polarization pattern. The resulting periodic potential may trap neutral atoms via the Stark shift. Atoms are cooled and congregate at the potential extrema. The resulting arrangement of trapped atoms resembles a crystal lattice and can be used for quantum simulation.

<span class="mw-page-title-main">Vitaly Efimov</span> Russian physicist

Vitaly N. Efimov is a Russian theoretical physicist. He proposed the existence of a novel and exotic state of matter now dubbed the Efimov State as a researcher in A. F. Ioffe Physico-Technical Institute, USSR Academy of Sciences, Leningrad, USSR in his 1970 paper "Energy levels arising from resonant two-body forces in a three-body system". It was announced in 2006 that the existence of this state of matter had been confirmed.

The Bose–Hubbard model gives a description of the physics of interacting spinless bosons on a lattice. It is closely related to the Hubbard model that originated in solid-state physics as an approximate description of superconducting systems and the motion of electrons between the atoms of a crystalline solid. The model was introduced by Gersch and Knollman in 1963 in the context of granular superconductors. The model rose to prominence in the 1980s after it was found to capture the essence of the superfluid-insulator transition in a way that was much more mathematically tractable than fermionic metal-insulator models.

In spectroscopy, the Autler–Townes effect, is a dynamical Stark effect corresponding to the case when an oscillating electric field is tuned in resonance to the transition frequency of a given spectral line, and resulting in a change of the shape of the absorption/emission spectra of that spectral line. The AC Stark effect was discovered in 1955 by American physicists Stanley Autler and Charles Townes.

<span class="mw-page-title-main">Ultracold neutrons</span> Free neutrons stored in very small traps

Ultracold neutrons (UCN) are free neutrons which can be stored in traps made from certain materials. The storage is based on the reflection of UCN by such materials under any angle of incidence.

<span class="mw-page-title-main">Quantum simulator</span> Simulators of quantum mechanical systems

Quantum simulators permit the study of a quantum system in a programmable fashion. In this instance, simulators are special purpose devices designed to provide insight about specific physics problems. Quantum simulators may be contrasted with generally programmable "digital" quantum computers, which would be capable of solving a wider class of quantum problems.

<span class="mw-page-title-main">Borromean nucleus</span>

A Borromean nucleus is an atomic nucleus comprising three bound components in which any subsystem of two components is unbound. This has the consequence that if one component is removed, the remaining two comprise an unbound resonance, so that the original nucleus is split into three parts.

Boson sampling is a restricted model of non-universal quantum computation introduced by Scott Aaronson and Alex Arkhipov after the original work of Lidror Troyansky and Naftali Tishby, that explored possible usage of boson scattering to evaluate expectation values of permanents of matrices. The model consists of sampling from the probability distribution of identical bosons scattered by a linear interferometer. Although the problem is well defined for any bosonic particles, its photonic version is currently considered as the most promising platform for a scalable implementation of a boson sampling device, which makes it a non-universal approach to linear optical quantum computing. Moreover, while not universal, the boson sampling scheme is strongly believed to implement computing tasks which are hard to implement with classical computers by using far fewer physical resources than a full linear-optical quantum computing setup. This advantage makes it an ideal candidate for demonstrating the power of quantum computation in the near term.

References

  1. 1 2 Ефимов, В. И. (1970). Слабосвязанные состояния трех резонансно взаимодействующих частиц[Weakly Bound States of Three Resonantly Interacting Particles]. Ядерная Физика[Nuclear Physics] (in Russian). 12 (5): 1080–1090.
  2. Efimov, V. (1970). "Energy levels arising from resonant two-body forces in a three-body system". Physics Letters B . 33 (8): 563–564. Bibcode:1970PhLB...33..563E. doi:10.1016/0370-2693(70)90349-7.
  3. "DLMF: §10.45 Functions of Imaginary Order ‣ Modified Bessel Functions ‣ Chapter 10 Bessel Functions". dlmf.nist.gov. Archived from the original on 2018-03-04. Retrieved 2018-02-16.
  4. S. M. Dawid, R. Gonsior, J. Kwapisz, K. Serafin, M. Tobolski, and S. D. Glazek (2018). "Renormalization group procedure for potential −g/r2". Physics Letters B. 777: 260–264. arXiv: 1704.08206 . doi:10.1016/j.physletb.2017.12.028.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. T. Kraemer; M. Mark; P. Waldburger; J. G. Danzl; C. Chin; B. Engeser; A. D. Lange; K. Pilch; A. Jaakkola; H.-C. Nägerl; R. Grimm (2006). "Evidence for Efimov quantum states in an ultracold gas of caesium atoms". Nature. 440 (7082): 315–318. arXiv: cond-mat/0512394 . Bibcode:2006Natur.440..315K. doi:10.1038/nature04626. PMID   16541068. S2CID   4379828.
  6. Knoop, S.; Ferlaino, F.; Mark, M.; Berninger, M.; Schöbel, H.; Nägerl, H. -C.; Grimm, R. (2009). "Observation of an Efimov-like trimer resonance in ultracold atom–dimer scattering". Nature Physics. 5 (3): 227. arXiv: 0807.3306 . Bibcode:2009NatPh...5..227K. doi:10.1038/nphys1203. S2CID   108288673.
  7. Zaccanti, M.; Deissler, B.; D’Errico, C.; Fattori, M.; Jona-Lasinio, M.; Müller, S.; Roati, G.; Inguscio, M.; Modugno, G. (2009). "Observation of an Efimov spectrum in an atomic system". Nature Physics. 5 (8): 586. arXiv: 0904.4453 . Bibcode:2009NatPh...5..586Z. doi:10.1038/nphys1334. S2CID   118384878.
  8. Pollack, S. E.; Dries, D.; Hulet, R. G.; Danzl, J. G.; Chin, C.; Engeser, B.; Lange, A. D.; Pilch, K.; Jaakkola, A.; Naegerl, H. -C.; Grimm, R. (2009). "Universality in Three- and Four-Body Bound States of Ultracold Atoms". Science. 326 (5960): 1683–1685. arXiv: 0911.0893 . Bibcode:2009Sci...326.1683P. doi:10.1126/science.1182840. PMID   19965389. S2CID   6728520.
  9. Huang, Bo; Sidorenkov, Leonid A.; Grimm, Rudolf; Hutson, Jeremy M. (2014). "Observation of the Second Triatomic Resonance in Efimov's Scenario". Physical Review Letters. 112 (19): 190401. arXiv: 1402.6161 . Bibcode:2014PhRvL.112s0401H. doi:10.1103/PhysRevLett.112.190401. PMID   24877917. S2CID   16378280.
  10. Braaten, E.; Hammer, H. (2006). "Universality in few-body systems with large scattering length". Physics Reports. 428 (5–6): 259–390. arXiv: cond-mat/0410417 . Bibcode:2006PhR...428..259B. doi:10.1016/j.physrep.2006.03.001. S2CID   14450309.
  11. Thøgersen, Martin (2009). "Universality in Ultra-Cold Few- and Many-Boson Systems". arXiv: 0908.0852 [cond-mat.quant-gas]. Ph.D. thesis.
  12. Naidon, Pascal; Endo, Shimpei (2017). "Efimov Physics: a review". Reports on Progress in Physics. 80 (5). 056001. arXiv: 1610.09805 . Bibcode:2017RPPh...80e6001N. doi:10.1088/1361-6633/aa50e8. PMID   28350544. S2CID   206095127. pp. 3–4: the Efimov effect gives rise to a broad class of phenomena that have been referred to as Efimov physics. ... [The term] is however not clearly defined and somewhat subjective.
  13. Shih-Kuang Tung; Karina Jiménez-García; Jacob Johansen; Colin V. Parker; Cheng Chin (2014). "Geometric Scaling of Efimov States in a Li6−Cs133 Mixture". Physical Review Letters. 113 (24): 240402. arXiv: 1402.5943 . Bibcode:2014PhRvL.113x0402T. doi:10.1103/PhysRevLett.113.240402. PMID   25541753. S2CID   21807523.
  14. R. Pires; J. Ulmanis; S. Häfner; M. Repp; A. Arias; E. D. Kuhnle; M. Weidemüller (2014). "Observation of Efimov Resonances in a Mixture with Extreme Mass Imbalance". Physical Review Letters. 112 (25): 250404. arXiv: 1403.7246 . Bibcode:2014PhRvL.112y0404P. doi:10.1103/PhysRevLett.112.250404. PMID   25014797. S2CID   24371722.
  15. Kunitski, Maksim; Zeller, Stefan; Voigtsberger, Jörg; Kalinin, Anton; Schmidt, Lothar Ph. H.; Schöffler, Markus; Czasch, Achim; Schöllkopf, Wieland; Grisenti, Robert E.; Jahnke, Till; Blume, Dörte; Dörner, Reinhard (May 2015). "Observation of the Efimov state of the helium trimer". Science. 348 (6234): 551–555. arXiv: 1512.02036 . Bibcode:2015Sci...348..551K. doi:10.1126/science.aaa5601. PMID   25931554. S2CID   206635093.