Three-body force

Last updated
A conjectural example of an interaction between two neutrons and a proton, the triton or hydrogen-3, which is beta unstable. An example of a stable 3-body interaction would be between two protons and one neutron, the helium-3 isotope Three-nucleon-interaction.png
A conjectural example of an interaction between two neutrons and a proton, the triton or hydrogen-3, which is beta unstable. An example of a stable 3-body interaction would be between two protons and one neutron, the helium-3 isotope

A three-body force is a force that does not exist in a system of two objects but appears in a three-body system. In general, if the behaviour of a system of more than two objects cannot be described by the two-body interactions between all possible pairs, as a first approximation, the deviation is mainly due to a three-body force.

The fundamental strong interaction does exhibit such behaviour, the most important example being the stability experimentally observed for the helium-3 isotope, which can be described as a 3-body quantum cluster entity of two protons and one neutron [PNP] in stable superposition. Direct evidence of a 3-body force in helium-3 is known: . The existence of stable [PNP] cluster calls into question models of the atomic nucleus that restrict nucleon interactions within shells to 2-body phenomenon. The three-nucleon-interaction is fundamentally possible because gluons, the mediators of the strong interaction, can couple to themselves. In particle physics, the interactions between the three quarks that compose hadrons can be described in a diquark model which might be equivalent to the hypothesis of a three-body force. There is growing evidence in the field of nuclear physics that three-body forces exist among the nucleons inside atomic nuclei for many different isotopes (three-nucleon force).

See also

Related Research Articles

Neutron Subatomic particle with no electric charge

The neutron is a subatomic particle, symbol
, with no electric charge and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave similarly within the nucleus, and each has a mass of approximately one atomic mass unit, they are both referred to as nucleons. Their properties and interactions are described by nuclear physics.

Nuclear physics Field of physics that deals with the structure and behavior of atomic nuclei

Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions. Other forms of nuclear matter are also studied. Nuclear physics should not be confused with atomic physics, which studies the atom as a whole, including its electrons.

Interacting boson model

The interacting boson model (IBM) is a model in nuclear physics in which nucleons pair up, essentially acting as a single particle with boson properties, with integral spin of 0, 2 or 4.

A tetraneutron is a hypothetical stable cluster of four neutrons. The existence of this cluster of particles is not supported by current models of nuclear forces. There is some empirical evidence suggesting that this particle does exist, based on a 2001 experiment by Francisco-Miguel Marqués and co-workers at the Ganil accelerator in Caen using a novel detection method in observations of the disintegration of beryllium and lithium nuclei. However, subsequent attempts to replicate this observation have failed.

String field theory a theory of strings in a second-quantized formalism on the target space (as opposed to the first-quantized formalism on the worldsheet)

String field theory (SFT) is a formalism in string theory in which the dynamics of relativistic strings is reformulated in the language of quantum field theory. This is accomplished at the level of perturbation theory by finding a collection of vertices for joining and splitting strings, as well as string propagators, that give a Feynman diagram-like expansion for string scattering amplitudes. In most string field theories, this expansion is encoded by a classical action found by second-quantizing the free string and adding interaction terms. As is usually the case in second quantization, a classical field configuration of the second-quantized theory is given by a wave function in the original theory. In the case of string field theory, this implies that a classical configuration, usually called the string field, is given by an element of the free string Fock space.

Magic number (physics) Number of protons or neutrons that make a nucleus particularly stable

In nuclear physics, a magic number is a number of nucleons such that they are arranged into complete shells within the atomic nucleus. As a result, atomic nuclei with a 'magic' number of protons or neutrons are much more stable than other nuclei. The seven most widely recognized magic numbers as of 2019 are 2, 8, 20, 28, 50, 82, and 126. For protons, this corresponds to the elements helium, oxygen, calcium, nickel, tin, lead and the hypothetical unbihexium, although 126 is so far only known to be a magic number for neutrons. Atomic nuclei consisting of such a magic number of nucleons have a higher average binding energy per nucleon than one would expect based upon predictions such as the semi-empirical mass formula and are hence more stable against nuclear decay.

Helium-4 isotope of helium

Helium-4 is a stable isotope of the element helium. It is by far the more abundant of the two naturally occurring isotopes of helium, making up about 99.99986% of the helium on Earth. Its nucleus is identical to an alpha particle, and consists of two protons and two neutrons.

Jeffrey A. Harvey is an American string theorist at the University of Chicago.

A conformal anomaly, scale anomaly, or Weyl anomaly is an anomaly, i.e. a quantum phenomenon that breaks the conformal symmetry of the classical theory.

Two-photon physics

Two-photon physics, also called gamma–gamma physics, is a branch of particle physics that describes the interactions between two photons. Normally, beams of light pass through each other unperturbed. Inside an optical material, and if the intensity of the beams is high enough, the beams may affect each other through a variety of non-linear effects. In pure vacuum, some weak scattering of light by light exists as well. Also, above some threshold of this center-of-mass energy of the system of the two photons, matter can be created.

Although there are nine known isotopes of helium (2He), only helium-3 and helium-4 are stable. All radioisotopes are short-lived, the longest-lived being 6
with a half-life of 806.7 milliseconds. The least stable is 5
, with a half-life of 7.6×10−22 s, although it is possible that 2
has an even shorter half-life.

Dual resonance model model in string theory

In theoretical physics, a dual resonance model arose during the early investigation (1968–1973) of string theory as an S-matrix theory of the strong interaction.

Francisco José Ynduráin Spanish physicist

Francisco José Ynduráin Muñoz was a Spanish theoretical physicist. He founded the particle physics research group that became the Department of Theoretical Physics at the Autonomous University of Madrid, where he was a Professor. He was described by his colleagues as "a scientist that always searched for excellence in research".

In physics, vector meson dominance (VMD) was a model developed by J. J. Sakurai in the 1960s before the introduction of quantum chromodynamics to describe interactions between energetic photons and hadronic matter.

Hot spots in subatomic physics are regions of high energy density or temperature in hadronic or nuclear matter.

Erwin Gabathuler was a particle physicist from Northern Ireland.

History of subatomic physics a chronological listing of experiments and corresponding discoveries in the field of subatomics

The idea that matter consists of smaller particles and that there exists a limited number of sorts of primary, smallest particles in nature has existed in natural philosophy at least since the 6th century BC. Such ideas gained physical credibility beginning in the 19th century, but the concept of "elementary particle" underwent some changes in its meaning: notably, modern physics no longer deems elementary particles indestructible. Even elementary particles can decay or collide destructively; they can cease to exist and create (other) particles in result.

Stephan Narison

Stephan Narison is a Malagasy theoretical high-energy physicist specialized in quantum chromodynamics (QCD), the gauge theory of strong interactions. He is the founder of the Series of International Conferences in Quantum Chromodynamics (QCD-Montpellier) and of the Series of International Conferences in High-Energy Physics (HEPMAD-Madagascar).

Ab initio methods (nuclear physics)

In nuclear physics, ab initio methods seek to describe the atomic nucleus from the bottom up by solving the non-relativistic Schrödinger equation for all constituent nucleons and the forces between them. This is done either exactly for very light nuclei or by employing certain well-controlled approximations for heavier nuclei. Ab initio methods constitute a more fundamental approach compared to e.g. the nuclear shell model. Recent progress has enabled ab initio treatment of heavier nuclei such as nickel.

Jean Iliopoulos

Jean Iliopoulos is a French-Greek physicist.