El Moro Canyon orthohantavirus

Last updated
El Moro Canyon orthohantavirus
Virus classification Red Pencil Icon.png
(unranked): Virus
Realm: Riboviria
Kingdom: Orthornavirae
Phylum: Negarnaviricota
Class: Ellioviricetes
Order: Bunyavirales
Family: Hantaviridae
Genus: Orthohantavirus
Species:
El Moro Canyon orthohantavirus
Strains [1]
  • Carrizal virus
  • El Moro Canyon virus
  • Huitzilac virus
Synonyms [2]
  • El Moro Canyon hantavirus
  • El Moro Canyon virus

El Moro Canyon orthohantavirus is a single-stranded, negative sense RNA virus of the genus Orthohantavirus . It is a causative agent of Hantavirus pulmonary syndrome. [3]

Natural reservoir

El Moro Canyon virus was isolated from western harvest mice (Reithrodontomys megalotis), in El Moro Canyon in southeastern Colorado in 1995.[ citation needed ]

Carrizal virus and Huitzilac virus, two additional strains, were first identified in Mexican wild rodents located in Morelos and Guerrero, Mexico. [4]

Related Research Articles

<i>Orthohantavirus</i> Genus of viruses

Orthohantavirus is a genus of single-stranded, enveloped, negative-sense RNA viruses in the family Hantaviridae within the order Bunyavirales. Members of this genus may be called orthohantaviruses or simply hantaviruses.

<i>Andes orthohantavirus</i> Species of virus

Andes orthohantavirus (ANDV), a species of Orthohantavirus, is a major causative agent of hantavirus cardiopulmonary syndrome (HCPS) and hantavirus pulmonary syndrome (HPS) in South America. It is named for the Andes mountains of Chile and Argentina, where it was first discovered. Originating in the reservoir of rodents, Andes orthohantavirus is easily transmitted to humans who come into contact with infected rodents or their fecal droppings. However, infected rodents do not appear ill, so there is no readily apparent indicator to determine whether the rodent is infected or not. Additionally, Andes orthohantavirus, specifically, is the only hantavirus that can be spread by human to human contact via bodily fluids or long-term contact from one infected individual to a healthy person.

Playa de Oro virus (OROV) is a probable species of orthohantavirus found in the rodents Oryzomys couesi and Sigmodon mascotensis in the Mexican state of Colima. The former is thought to be the main host. The sequences of parts of the virus's RNA-based genome have been determined; they differ by 7–10% in amino acid composition and 22–24% in nucleotide composition from closely related viruses.

New York orthohantavirus or New York virus is an Orthohantavirus. It is considered a strain of Sin Nombre orthohantavirus. It was first isolated from a white-footed mouse caught on an island off New York. The virus is associated with typical hantavirus pulmonary syndrome.

Bayou orthohantavirus (BAYV) is a species of Orthohantavirus first identified in 1993 in Louisiana. and later confirmed by other investigators. In 1996, the marsh rice rat was identified as the natural reservoir of the virus, indicating the virus to be widespread throughout the Southeastern United States. BAYV infection causes hantavirus pulmonary syndrome (HPS) and represents the second most common hantavirus in the United States behind the Sin Nombre orthohantavirus.

Black Creek Canal orthohantavirus (BCCV) is a single-stranded, negative sense RNA virus species of New World Orthohantavirus. It was first isolated in cotton rats found in the Black Creek Canal area of Dade County, Florida in 1995. The discovery followed from an isolated case of Hantavirus pulmonary syndrome diagnosed in a Dade County resident.

Sangassou orthohantavirus(SANGV) is single-stranded, negative-sense RNA virus species of the genus Orthohantavirus in the Bunyavirales order. It was first isolated in an African wood mouse in the forest in Guinea, West Africa in 2010. It is named for the village near where the mouse was trapped. It is the first indigenous Murinae-associated African hantavirus to be discovered.

<span class="mw-page-title-main">Hantavirus pulmonary syndrome</span> Viral pulmonary disease of humans

Hantavirus pulmonary syndrome (HPS) is one of two potentially fatal syndromes of zoonotic origin caused by species of hantavirus. These include Black Creek Canal virus (BCCV), New York orthohantavirus (NYV), Monongahela virus (MGLV), Sin Nombre orthohantavirus (SNV), and certain other members of hantavirus genera that are native to the United States and Canada.

Dobrava-Belgrade orthohantavirus (DOBV), also known as Dobrava virus, is an enveloped, single-stranded, negative-sense RNA virus species of Old World Orthohantavirus. It is one of several species of Hantavirus that is the causative agent of severe Hantavirus hemorrhagic fever with renal syndrome. It was first isolated in 1985 from a yellow-necked mouse found in the village of Dobrava, southeastern Slovenia. It was subsequently isolated in striped field mice in Russia and other parts of Eastern Europe. It has also been found in Germany but the reservoir host there is unknown.

Saaremaa virus is a single-stranded, negative-sense, RNA virus Orthohantavirus that causes a milder form of Hantavirus hemorrhagic fever with renal syndrome. It is a member virus of Dobrava-Belgrade orthohantavirus. It was first isolated from a striped field mouse in Slovakia.

Soochong virus (SOOV) is a zoonotic negative sense single-stranded RNA virus. It may be a member of the genus Orthohantavirus, but it has not be definitively classified as a species and may only be a strain. It is one of four rodent-borne Hantaviruses found in the Republic of Korea. It is the etiologic agent for Hantavirus hemorrhagic fever with renal syndrome (HFRS). The other species responsible for HFRS in Korea are Seoul virus, Haantan virus, and Muju virus.

Muju virus(MUV) is a zoonotic negative-sense single-stranded RNA virus of the genus Orthohantavirus. It is a member virus of Puumala orthohantavirus. It is one of four rodent-borne Hantaviruses found in the Republic of Korea. It is the etiologic agent for Hantavirus hemorrhagic fever with renal syndrome (HFRS). The other species responsible for HFRS in Korea are Seoul orthohantavirus, Hantaan orthohantavirus, and Soochong virus.

Prospect Hill orthohantavirus is a single-stranded, negative-sense Hantaan-like zoonotic RNA virus isolated from meadow voles and microtine and other cricetid rodents in the United States. It has a widespread distribution in Pennsylvania, Maryland, West Virginia, Minnesota and California. The overall risk of infection in humans is low. It was first isolated from a meadow vole found in Prospect Hill, Maryland for which it is named.

Tula orthohantavirus, formerly Tula virus, (TULV) is a single-stranded, negative-sense RNA virus species of orthohantavirus first isolated from a European common vole found in Central Russia. It causes Hantavirus hemorrhagic fever with renal syndrome. The Microtus species are also found in North America, Europe, Scandinavia, Slovenia, Asia, and Western Russia. Human cases of Tula orthohantavirus have also been reported in Switzerland and Germany.

Limestone Canyon virus (LSC) is a single-stranded, negative-sense RNA zoonotic Orthohantavirus that is genetically similar to Sin Nombre orthohantavirus which causes Hantavirus pulmonary syndrome (HPS) in humans. HPS causing hantaviruses are found only in the United States and South America.

Hantaan orthohantavirus (HTNV) is an enveloped, single-stranded, negative-sense RNA virus species of Old World Orthohantavirus. It is the causative agent of Korean hemorrhagic fever in humans. It is named for the Hantan River in South Korea, and in turn lends the name to its genus Orthohantavirus and family Hantaviridae.

Tanganya virus(TGNV) is an enveloped, single-stranded, negative-sense RNA virus, possibly of the genus orthohantavirus in the Bunyavirales order. It is the second indigenous Murinae-associated African hantavirus to be discovered. It has a low sequence similarity to other hantaviruses and serologically distinct from other hantaviruses. Its host is Crocidura theresae.

Imjin thottimvirus(MJNV) is a single-stranded, enveloped, negative-sense RNA virus of the orthohantavirus genus in the Bunyavirales order. It is a newly identified hantavirus isolated from the lung tissues of Ussuri white-toothed shrews of the species Crocidura lasiura captured near the demilitarized zone in the Republic of Korea during 2004 and 2005.

Catacamas virus is a single-stranded, enveloped novel RNA virus in the genus Orthohantavirus of the order Bunyavirales isolated in Oryzomys couesi near the town of Catacamas in eastern Honduras. It is a member virus of Bayou orthohantavirus.

Blue River virus (BRV) is a single-stranded, negative sense RNA virus of New World hantavirus isolated from a white-footed mouse near the Blue River in Jackson County, Missouri in 1995. Its genome is similar to Sin Nombre orthohantavirus (SNV) but varies in the S1 and S2 segments. Like Sin Nombre orthohantavirus, Blue River virus causes Hantavirus pulmonary syndrome (HPS) in humans.

References

  1. Briese, Thomas; et al. (21 September 2016). "In the genus Hantavirus (proposed family Hantaviridae, proposed order Bunyavirales), create 24 new species, abolish 7 species, change the demarcation criteria, and change the name of the genus to Orthohantavirus; likewise, rename its constituent species" (PDF). International Committee on Taxonomy of Viruses (ICTV). Retrieved 24 July 2020.
  2. Briese, Thomas; et al. (15 June 2015). "Implementation of non-Latinized binomial species names in the family Bunyaviridae" (PDF). International Committee on Taxonomy of Viruses (ICTV). Retrieved 8 March 2019.
  3. Calisher CH, Root JJ, Mills JN, Rowe JE, Reeder SA, Jentes ES, Wagoner K, Beaty BJ. Epizootiology of Sin Nombre and El Moro Canyon hantaviruses, southeastern Colorado, 1995–2000. J Wildl Dis. 2005 Jan;41(1):1–11.
  4. Saasa N, Sánchez-Hernández C, de Lourdes Romero-Almaraz M, Guerrero-Ibarra E, Almazán-Catalán A, Yoshida H, Miyashita D, Ishizuka M, Sanada T, Seto T, Yoshii K, Ramos C, Yoshimatsu K, Arikawa J, Takashima I, Kariwa H (2012). "Ecology of hantaviruses in Mexico: genetic identification of rodent host species and spillover infection". Virus Res. 168 (1–2): 88–96. doi:10.1016/j.virusres.2012.06.020. PMID   22750131.