The topic of this article may not meet Wikipedia's notability guideline for academics .(June 2022) |
Elaine Hsiao | |
---|---|
Born | Elaine Yih-Nien Hsiao |
Alma mater | University of California, Los Angeles (BS) California Institute of Technology (PhD) |
Scientific career | |
Fields | Biology |
Institutions | University of California, Los Angeles California Institute of Technology |
Thesis | Brain, Gut and Immune Interactions in Autism Spectrum Disorder (2013) |
Doctoral advisor | Paul Patterson [1] |
Website | hsiao |
Elaine Yih-Nien Hsiao is an American biologist who is Professor in Biological Sciences at University of California, Los Angeles. [2] [3] Her research considers the microbes that impact human health. [4] [5] [6] She was a 2022 Laureate for the Blavatnik Awards for Young Scientists. [7] [8]
Hsiao was born to a Taiwanese American family. She was an undergraduate student in microbiology at the University of California, Los Angeles.[ citation needed ] After graduating she moved to California Institute of Technology, where she focused on neurobiology in the laboratory of Paul Patterson. At CalTech, she studied the neuroimmune system, and the molecular mechanisms that underpin disorders in neurodevelopment. [1]
Hsiao moved to the research groups of Rustem F. Ismagilov and Sarkis Mazmanian. [9] In 2015, Hsiao joined the UCLA Brain Research Institute as an assistant professor. [10] She was made an associate professor in 2020. Hsiao is interested in microbes and how they regulate brain development and behavior. These microbes impact the brain by serving as moderators for neurotransmitters and neuropeptides, and are involved with complicated neurological behaviors. Alterations in the levels of these neuro-active molecules are involved in autism and Parkinson's disease.[ citation needed ]
Hsiao investigated how the maternal microbiome impacts fetal brain development. [11] She found that depleting the microbioata of a maternal gut damaged fetal brain development, altering the specific genes which are switched on and how axons between neurons formed. She showed that there were fewer axons which connect the thalamus to the cortex, and gave rise to sensory impairments. [11]
In 2013, Hsiao delivered a TEDx talk on how microbes can alter brain function. [12]
The human microbiome is the aggregate of all microbiota that reside on or within human tissues and biofluids along with the corresponding anatomical sites in which they reside, including the gastrointestinal tract, skin, mammary glands, seminal fluid, uterus, ovarian follicles, lung, saliva, oral mucosa, conjunctiva, and the biliary tract. Types of human microbiota include bacteria, archaea, fungi, protists, and viruses. Though micro-animals can also live on the human body, they are typically excluded from this definition. In the context of genomics, the term human microbiome is sometimes used to refer to the collective genomes of resident microorganisms; however, the term human metagenome has the same meaning.
Bacillota is a phylum of bacteria, most of which have gram-positive cell wall structure. The renaming of phyla such as Firmicutes in 2021 remains controversial among microbiologists, many of whom continue to use the earlier names of long standing in the literature.
The Clostridia are a highly polyphyletic class of Bacillota, including Clostridium and other similar genera. They are distinguished from the Bacilli by lacking aerobic respiration. They are obligate anaerobes and oxygen is toxic to them. Species of the class Clostridia are often but not always Gram-positive and have the ability to form spores. Studies show they are not a monophyletic group, and their relationships are not entirely certain. Currently, most are placed in a single order called Clostridiales, but this is not a natural group and is likely to be redefined in the future.
Gut microbiota, gut microbiome, or gut flora are the microorganisms, including bacteria, archaea, fungi, and viruses, that live in the digestive tracts of animals. The gastrointestinal metagenome is the aggregate of all the genomes of the gut microbiota. The gut is the main location of the human microbiome. The gut microbiota has broad impacts, including effects on colonization, resistance to pathogens, maintaining the intestinal epithelium, metabolizing dietary and pharmaceutical compounds, controlling immune function, and even behavior through the gut–brain axis.
Martin J. Blaser is an American physician who is the director of the Center for Advanced Biotechnology and Medicine at Rutgers (NJ) Biomedical and Health Sciences and the Henry Rutgers Chair of the Human Microbiome and Professor of Medicine and Pathology and Laboratory Medicine at the Rutgers Robert Wood Johnson Medical School in New Jersey.
Dysbiosis is characterized by a disruption to the microbiome resulting in an imbalance in the microbiota, changes in their functional composition and metabolic activities, or a shift in their local distribution. For example, a part of the human microbiota such as the skin flora, gut flora, or vaginal flora, can become deranged (unbalanced), when normally dominating species become underrepresented and species that normally are outcompeted or contained increase to fill the void. Similar to the human gut microbiome, diverse microbes colonize the plant rhizosphere, and dysbiosis in the rhizosphere, can negatively impact plant health. Dysbiosis is most commonly reported as a condition in the gastrointestinal tract or plant rhizosphere.
Jeffrey Ivan Gordon is a biologist and the Dr. Robert J. Glaser Distinguished University Professor and Director of the Center for Genome Sciences and Systems Biology at Washington University in St. Louis. He is internationally known for his research on gastrointestinal development and how gut microbial communities affect normal intestinal function, shape various aspects of human physiology including our nutritional status, and affect predisposition to diseases. He is a member of the National Academy of Sciences, the American Academy of Arts and Sciences, the Institute of Medicine of the National Academies, and the American Philosophical Society.
Long-term close-knit interactions between symbiotic microbes and their host can alter host immune system responses to other microorganisms, including pathogens, and are required to maintain proper homeostasis. The immune system is a host defense system consisting of anatomical physical barriers as well as physiological and cellular responses, which protect the host against harmful microorganisms while limiting host responses to harmless symbionts. Humans are home to 1013 to 1014 bacteria, roughly equivalent to the number of human cells, and while these bacteria can be pathogenic to their host most of them are mutually beneficial to both the host and bacteria.
Nancy A. Moran is an American evolutionary biologist and entomologist, University of Texas Leslie Surginer Endowed Professor, and co-founder of the Yale Microbial Diversity Institute. Since 2005, she has been a member of the United States National Academy of Sciences. Her seminal research has focused on the pea aphid, Acyrthosiphon pisum and its bacterial symbionts including Buchnera (bacterium). In 2013, she returned to the University of Texas at Austin, where she continues to conduct research on bacterial symbionts in aphids, bees, and other insect species. She has also expanded the scale of her research to bacterial evolution as a whole. She believes that a good understanding of genetic drift and random chance could prevent misunderstandings surrounding evolution. Her current research goal focuses on complexity in life-histories and symbiosis between hosts and microbes, including the microbiota of insects.
The gut–brain axis is the two-way biochemical signaling that takes place between the gastrointestinal tract and the central nervous system (CNS). The term "microbiota–gut–brain axis" highlights the role of gut microbiota in these biochemical signaling. Broadly defined, the gut–brain axis includes the central nervous system, neuroendocrine system, neuroimmune systems, the hypothalamic–pituitary–adrenal axis, sympathetic and parasympathetic arms of the autonomic nervous system, the enteric nervous system, vagus nerve, and the gut microbiota.
A microbiome is the community of microorganisms that can usually be found living together in any given habitat. It was defined more precisely in 1988 by Whipps et al. as "a characteristic microbial community occupying a reasonably well-defined habitat which has distinct physio-chemical properties. The term thus not only refers to the microorganisms involved but also encompasses their theatre of activity". In 2020, an international panel of experts published the outcome of their discussions on the definition of the microbiome. They proposed a definition of the microbiome based on a revival of the "compact, clear, and comprehensive description of the term" as originally provided by Whipps et al., but supplemented with two explanatory paragraphs, the first pronouncing the dynamic character of the microbiome, and the second clearly separating the term microbiota from the term microbiome.
Sarkis Mazmanian is an American medical microbiologist who has served as a professor at the California Institute of Technology since 2006. He is currently the Luis & Nelly Soux Professor of Microbiology in the Division of Biology and Biological Engineering, and a board member of Seed. Prior to this, Mazmanian was affiliated with Harvard Medical School and the University of Chicago. In 2012, Mazmanian was awarded a MacArthur Fellowship for his pioneering work on the human microbiome.
Hologenomics is the omics study of hologenomes. A hologenome is the whole set of genomes of a holobiont, an organism together with all co-habitating microbes, other life forms, and viruses. While the term hologenome originated from the hologenome theory of evolution, which postulates that natural selection occurs on the holobiont level, hologenomics uses an integrative framework to investigate interactions between the host and its associated species. Examples include gut microbe or viral genomes linked to human or animal genomes for host-microbe interaction research. Hologenomics approaches have also been used to explain genetic diversity in the microbial communities of marine sponges.
In the field of microbiome research, a group of species is said to show a phylosymbiotic signal if the degree of similarity between the species' microbiomes recapitulates to a significant extent their evolutionary history. In other words, a phylosymbiotic signal among a group of species is evident if their microbiome similarity dendrogram could prove to have significant similarities with their host's phylogenic tree. For the analysis of the phylosymbiotic signal to be reliable, environmental differences that could shape the host microbiome should be either eliminated or accounted for. One plausible mechanistic explanation for such phenomena could be, for example, a result of host immune genes that rapidly evolve in a continuous arms race with members of its microbiome.
Yasmine Belkaid; is an immunologist, currently President of the Institut Pasteur. She has Algerian citizenship by her father and French citizenship by her mother, and she also holds US citizenship.
Janelle S. Ayres is an American immunologist and microbiologist, member of the NOMIS Center for Immunobiology and Microbial Pathogenesis and Helen McLoraine Developmental Chair at the Salk Institute for Biological Sciences. Her research focuses on the relation of host-pathogen interactions with the microbiome.
Holly Ann Ingraham is an American physiologist who is the Herzstein Professor of Molecular Physiology at the University of California, San Francisco. She studies women's health, in particular, sex-dependent central regulation of female metabolism and physiology. She was Elected to the American Association for the Advancement of Science in 2012, the American Academy of Arts and Sciences in 2019, and the National Academy of Sciences in 2021.
Menna R. Clatworthy is a British immunologist who is Professor of Translational Medicine at the University of Cambridge. She studies human tissue immunity. She is a Fellow of the Academy of Medical Sciences and was elected to the European Molecular Biology Organization in 2022.
The poultry microbiome is an understudied, yet extremely impactful part of the poultry industry. Poultry is defined as any avian species used for production purposes such as food or down feathers. The United States consumes more poultry, specifically broiler meat, than any other type of protein. Worldwide, poultry makes up 33% of consumed meat. This makes poultry extremely valuable and the impact of the poultry microbiome on health and production even more valuable. Antonie van Leeuwenhoek was the first to notice microbes inside animals through stool samples giving light to further research into the gut microbiome. His discovery lead to the ever evolving study of the microbiota and microbiome. The microbiota is the entirety of living organisms including bacteria, viruses, fungi, and archaea in an environment. The microbiome is the combination of the microbiota and the additional activities in that system including metabolites and chemicals in a habitat. Much of the work done to characterize the poultry microbiome has been accomplished over the past decade and was done through the use of 16s rRNA sequencing.
The gut–memory connection is the relation between the gastrointestinal tract and memory performance. The phenomenon of the gut–memory connection is based on and part of the idea of the gut-brain axis, a complex communication network, linking the central nervous system to the gut. The gut-brain axis first gained significant momentum in research and formal recognition in the 20th century with advancements in neuroscience and gastroenterology. The idea of a connection between the gut and emotion has been hinted at in various ancient traditions and medical practices for centuries.