Ethiopia has abundant resources that can generate 60,000 TWh electricity from hydroelectric, wind, solar and geothermal sources in the next 10 years. The electrification process causes GDP growth and high public demand for 110 million of its population. On total, Ethiopia produces 14 TWh (14,000 GWh) from all facilities and exports other resources like natural gas or crude oil.
There are numerous restraints over electrification with most people in rural areas utilize traditional biomass energy sources and lack of modernized transmission and distribution. To solve this, the government set up big projects to construct hydroelectric dams such as the Grand Ethiopian Renaissance Dam (GERD) and Koysha Dam that provide fertile electricity throughout the country. The other issues is power outage that can adversely affects households from daily interruption by the Ethiopian Electric Utility. Frequent power outage may lead to serious threat to people such as fear and discomfort to the environment as well as the use of alternative energy sources like charcoal, firewoods and candle.
Ethiopia has abundant renewable energy resources that potentially generates 60,000 TWh of electric power from hydroelectric, wind, solar and geothermal sources. This boosted the GDP growth over past decades and increased electricity demand for public. However, the country is experiencing energy shortages and load shedding as it strive to offer supply for over 110 million people and predicted to grow 2.5% per year. With current ongoing projects, the country is constructing 4,500 MW of installed generation capacity. There is also plan to increase installed generation capacity in exponent to 17,000 MW in 10 years. [1]
Resources | Unit | Exploitable reserve | Exploited percent |
---|---|---|---|
Hydropower | MW | 45,000 | <5% |
Solar/day | kWh/m2 | 4 – 6 | <1% |
Wind, power and speed | GW m/s | 100 >7 | <1% |
Geothermal | MW | <10,000 | <1% |
Agricultural waste | Million tons | 15-20 | 30% |
Natural gas | Billion m3 | 113 | 0% |
Coal | Million tons | 300 | 0% |
Oil shale | Million tons | 253 | 0% |
According to Worldometers, Ethiopia generated 11,116,860 MWh of electricity as of 2016 (covering 123% of its annual consumption needs). [2] Totally, Ethiopia produces 11 billion kWh from all facilities. The rest of self produced is either exported into other countries or unused. Thus, import–export is crucial to the energy sector involving sources like natural gas or crude oil. [3]
Despite being potential, the availability of electricity still at infancy age and Ethiopia remained the lowest electricity consumption per capita in Africa. The majority rural population are utilizing traditional biomass energy sources than modern one, which accounted about 45.8 out of 49.9 million tonnes of oil equivalent of total primary energy supply in 2015. [4]
According to Ministry of Water, Irrigation and Electricity in 2017, access to electrical grid was about 56% and household connectivity was only about 25%. By 2014, estimated electricity consumption was about 70 kWh per capita and increased to 100 kWh by 2017. [5] [6] However, it was lower than other African countries in terms of per capita. [7] The government began strategic priorities in the energy sector, for example universal electrification access, energy efficiency improvement, developing decentralized off-grid power generation, and exporting electricity to neighboring countries. A number of big projects were set up to construct largest dams for electrification: the Koysha and Grand Ethiopian Renaissance Dam (GERD) are under construction to increase energy production. [8] [9]
In 2018, access of electricity in Ethiopia reached 45%, and power generation, especially hydropower, tripled in a decade from about 850 MW to above 2,000 MW. [12] [13] According to the World Bank, [14] power outage of Ethiopia occurred 8.2 times in a typical month, each average duration of 5.8 hours. Similarly, in July 2015–June 2016, daily electricity interruption from the Ethiopian Electric Utility estimated on average duration about 1–9 minutes at the distribution lines in Addis Ababa. [15] The reason behind the problem is poor physical condition and low capacity of transmission and distribution lines, though shortfall in supply and scheduled outages sometimes common. [16]
Frequent outage may cause potential benefits from individuals households overall. Engida et al. (2011) using a static computable general equilibrium model, estimated loss of 3.1% of GDP in Ethiopia as a result of power outage in 2010. Power outage also critically concerned by manufacturing firms. For households, it can cause adverse effects into several forms which leads to incur alternative source of energy such as charcoal, candle, kerosene, firewood, liquefied petroleum gas and standby generators. It can also incites fears and discomfort such as inability to walk at night, loss of leisure time, inconvenience from alternative energy sources and environmental and health effects. In addition, it would impact on energy transition from solid fuels to modern energy by slowing down the connections. [16]
The electricity sector in Norway relies predominantly on hydroelectricity. A significant share of the total electrical production is consumed by national industry.
As of 2018, renewable energy accounted for 79% of the domestically produced electricity used in Brazil.
Renewable energy in Spain, comprising bioenergy, wind, solar, and hydro sources, accounted for 15.0% of the Total Energy Supply (TES) in 2019. Oil was the largest contributor at 42.4% of the TES, followed by gas, which made up 25.4%.
Energy in Romania describes energy and electricity production, consumption and import in Romania.
As of April 2020, the energy sector in Senegal has an installed capacity of 1431 megawatts (MW). Energy is produced by private operators and sold to the Senelec energy corporation. According to a 2020 report by the International Energy Agency, Senegal had nearly 70% of the country connected to the national grid. Current government strategies for electrification include investments in off-grid solar and connection to the grid.
The Democratic Republic of the Congo was a net energy exporter in 2008. Most energy was consumed domestically in 2008. According to the IEA statistics the energy export was in 2008 small and less than from the Republic of Congo. 2010 population figures were 3.8 million for the RC compared to CDR 67.8 Million.
Energy in Ethiopia includes energy and electricity production, consumption, transport, exportation, and importation in the country of Ethiopia.
Renewable energy in Russia mainly consists of hydroelectric energy. Russia is rich not only in oil, gas and coal, but also in wind, hydro, geothermal, biomass and solar energy – the resources of renewable energy. Practically all regions have at least one or two forms of renewable energy that are commercially exploitable, while some regions are rich in all forms of renewable energy resources. However, fossil fuels dominate Russia’s current energy mix, while its abundant and diverse renewable energy resources play little role.
Denmark's western electrical grid is part of the Synchronous grid of Continental Europe whereas the eastern part is connected to the Synchronous grid of Northern Europe via Sweden.
Italy's total electricity consumption was 302.75 terawatt-hour (TWh) in 2020, of which 270.55 TWh (89.3%) was produced domestically and the remaining 10.7% was imported.
The electricity sector in Switzerland relies mainly on hydroelectricity, since the Alps cover almost two-thirds of the country's land mass, providing many large mountain lakes and artificial reservoirs suited for hydro power. In addition, the water masses drained from the Swiss Alps are intensively used by run-of-the-river hydroelectricity (ROR). With 9,052 kWh per person in 2008, the country's electricity consumption is relatively high and was 22% above the European Union's average.
The Polish energy sector is the fifth largest in Europe. By the end of 2023, the installed generation capacity had reached 55.216 GW, while electricity consumption for that year was 167.52 TWh and generation was 163.63 TWh, with 26% of this coming from renewables.
Primary energy consumption in Spain in 2020 was mainly composed of fossil sources. The largest sources are petroleum (42.3%), natural gas (19.8%) and coal (11.6%). The remaining 26.3% is accounted for by nuclear energy (12%) and different renewable energy sources (14.3%). Domestic production of primary energy includes nuclear (44.8%), solar, wind and geothermal (22.4%), biomass and waste (21.1%), hydropower (7.2%) and fossil (4.5%).
Total primary energy supply (TPES) in Slovenia was 6.80 Mtoe in 2019. In the same year, electricity production was 16.1 TWh, consumption was 14.9 TWh.
Despite the historic usage of wind power to drain water and grind grain, the Netherlands today lags 21 of the 26 other member states of the European Union in the consumption of energy from renewable sources. In 2022, the Netherlands consumed just 15% of its total energy from renewables. According to statistics published by Eurostat, it was the last among the EU countries in the shift away from global warming-inducing energy sources. The leading renewable sources in the country are biomass, wind, solar and both geothermal and aerothermal power. In 2018 decisions were made to replace natural gas as the main energy source in the Netherlands with increased electrification being a major part of this process.
Ethiopia generates most of its electricity from renewable energy, mainly hydropower.
Renewable energy in Albania includes biomass, geothermal, hydropower, solar, and wind energy. Albania relies mostly on hydroelectric resources, therefore, it has difficulties and shortages when water levels are low. The climate in Albania is Mediterranean, so it possesses considerable potential for solar energy production. Mountain elevations provide good areas for wind projects. There is also potentially usable geothermal energy because Albania has natural wells.
Nepal is a country enclosed by land, situated between China and India. It has a total area of 148,006.67 square kilometers and a population of 29.16 million. It has a small economy, with a GDP of $42 billion in 2024, amounting to about 1% of South Asia and 0.04% of the World's GDP.
Myanmar had a total primary energy supply (TPES) of 16.57 Mtoe in 2013. Electricity consumption was 8.71 TWh. 65% of the primary energy supply consists of biomass energy, used almost exclusively (97%) in the residential sector. Myanmar’s energy consumption per capita is one of the lowest in Southeast Asia due to the low electrification rate and a widespread poverty. An estimated 65% of the population is not connected to the national grid. Energy consumption is growing rapidly, however, with an average annual growth rate of 3.3% from 2000 to 2007.
Denmark is a leading country in renewable energy production and usage. Renewable energy sources collectively produced 81% of Denmark's electricity generation in 2022, and are expected to provide 100% of national electric power production from 2030. Including energy use in the heating/cooling and transport sectors, Denmark is expected to reach 100% renewable energy in 2050, up from the 34% recorded in 2021.