Electroforming

Last updated
Electroforming process Eformschematic.svg
Electroforming process

Electroforming is a metal forming process in which parts are fabricated through electrodeposition on a model, known in the industry as a mandrel. Conductive (metallic) mandrels are treated to create a mechanical parting layer, or are chemically passivated to limit electroform adhesion to the mandrel and thereby allow its subsequent separation. Non-conductive (glass, silicon, plastic) mandrels require the deposition of a conductive layer prior to electrodeposition. Such layers can be deposited chemically, or using vacuum deposition techniques (e.g., gold sputtering). The outer surface of the mandrel forms the inner surface of the form.

Contents

The process involves passing direct current through an electrolyte containing salts of the metal being electroformed. The anode is the solid metal being electroformed, and the cathode is the mandrel, onto which the electroform gets plated (deposited). The process continues until the required electroform thickness is achieved. The mandrel is then either separated intact, melted away, or chemically dissolved.

The surface of the finished part that was in intimate contact with the mandrel is replicated in fine detail with respect to the original, and is not subject to the shrinkage that would normally be experienced in a foundry cast metal object, or the tool marks of a milled part. The solution side of the part is less well defined, and that loss of definition increases with thickness of the deposit. In extreme cases, where a thickness of several millimetres is required, there is preferential build-up of material on sharp outside edges and corners. This tendency can be reduced by shielding, or a process known as periodic reverse, [1] where the electroforming current is reversed for short periods and the excess is preferentially dissolved electrochemically. The finished form can either be the finished part, or can be used in a subsequent process to produce a positive of the original mandrel shape, such as with vinyl records or CD and DVD stamper manufacture.

In recent years, due to its ability to replicate a mandrel surface with practically no loss of fidelity, electroforming has taken on new importance in the fabrication of micro and nano-scale metallic devices and in producing precision injection molds with micro- and nano-scale features for production of non-metallic micro-molded objects.

Process

Electroforming process detail Electroforming process.PNG
Electroforming process detail

In the basic electroforming process, an electrolytic bath is used to deposit nickel or other electroformable metal onto a conductive surface of a model (mandrel). Once the deposited material has been built up to the desired thickness, the electroform is parted from the substrate. This process allows precise replication of the mandrel surface texture and geometry at low unit cost with high repeatability and excellent process control.

If the mandrel is made of a non-conductive material it can be coated with a thin conductive layer.

Advantages and disadvantages

The main advantage of electroforming is that it accurately replicates the external shape of the mandrel. Generally, machining a cavity accurately is more challenging than machining a convex shape, however the opposite holds true for electroforming because the mandrel's exterior can be accurately machined and then used to electroform a precision cavity. [2]

Compared to other basic metal forming processes (casting, forging, stamping, deep drawing, machining and fabricating) electroforming is very effective when requirements call for extreme tolerances, complexity or light weight. The precision and resolution inherent in the photo-lithographically produced conductive patterned substrate, allows finer geometries to be produced to tighter tolerances while maintaining superior edge definition with a near optical finish. Electroformed metal can be extremely pure, with superior properties over wrought metal due to its refined crystal structure. Multiple layers of electroformed metals can be bonded together, or to different substrate materials to produce complex structures with "grown-on" flanges and bosses.

Tolerances of 1.5 to 3 nanometres have been reported.[ citation needed ]

A wide variety of shapes and sizes can be made by electroforming, the principal limitation being the need to part the product from the mandrel. Since the fabrication of a product requires only a single model or mandrel, low production quantities can be made economically.

See also

Related Research Articles

<span class="mw-page-title-main">Electroplating</span> Creation of protective or decorative metallic coating on other metal with electric current

Electroplating, also known as electrochemical deposition or electrodeposition, is a process for producing a metal coating on a solid substrate through the reduction of cations of that metal by means of a direct electric current. The part to be coated acts as the cathode of an electrolytic cell; the electrolyte is a solution of a salt of the metal to be coated; and the anode is usually either a block of that metal, or of some inert conductive material. The current is provided by an external power supply.

<span class="mw-page-title-main">Chrome plating</span> Technique of electroplating

Chrome plating is a technique of electroplating a thin layer of chromium onto a metal object. A chrome plated part is called chrome, or is said to have been chromed. The chromium layer can be decorative, provide corrosion resistance, facilitate cleaning, or increase surface hardness. Sometimes, a less expensive substitute for chrome such as nickel may be used for aesthetic purposes.

Plating is a surface covering in which a metal is deposited on a conductive surface. Plating has been done for hundreds of years; it is also critical for modern technology. Plating is used to decorate objects, for corrosion inhibition, to improve solderability, to harden, to improve wearability, to reduce friction, to improve paint adhesion, to alter conductivity, to improve IR reflectivity, for radiation shielding, and for other purposes. Jewelry typically uses plating to give a silver or gold finish.

<span class="mw-page-title-main">Copper electroplating</span>

Copper electroplating is the process of electroplating a layer of copper onto the surface of a metal object. Copper is used both as a standalone coating and as an undercoat onto which other metals are subsequently plated. The copper layer can be decorative, provide corrosion resistance, increase electrical and thermal conductivity, or improve the adhesion of additional deposits to the substrate.

<span class="mw-page-title-main">Gold plating</span>

Gold plating is a method of depositing a thin layer of gold onto the surface of another metal, most often copper or silver, by chemical or electrochemical plating. This article covers plating methods used in the modern electronics industry; for more traditional methods, often used for much larger objects, see gilding.

<span class="mw-page-title-main">Electrochemical machining</span>

Electrochemical machining (ECM) is a method of removing metal by an electrochemical process. It is normally used for mass production and is used for working extremely hard materials or materials that are difficult to machine using conventional methods. Its use is limited to electrically conductive materials. ECM can cut small or odd-shaped angles, intricate contours or cavities in hard and exotic metals, such as titanium aluminides, Inconel, Waspaloy, and high nickel, cobalt, and rhenium alloys. Both external and internal geometries can be machined.

<span class="mw-page-title-main">Metallizing</span>

Metallizing is the general name for the technique of coating metal on the surface of objects. Metallic coatings may be decorative, protective or functional.

<span class="mw-page-title-main">Electrowinning</span> Electrolytic extraction process

Electrowinning, also called electroextraction, is the electrodeposition of metals from their ores that have been put in solution via a process commonly referred to as leaching. Electrorefining uses a similar process to remove impurities from a metal. Both processes use electroplating on a large scale and are important techniques for the economical and straightforward purification of non-ferrous metals. The resulting metals are said to be electrowon.

Silvering is the chemical process of coating a non-conductive substrate such as glass with a reflective substance, to produce a mirror. While the metal is often silver, the term is used for the application of any reflective metal.

<span class="mw-page-title-main">Electrotyping</span> Chemical method for forming metal parts that exactly reproduce a model

Electrotyping is a chemical method for forming metal parts that exactly reproduce a model. The method was invented by Moritz von Jacobi in Russia in 1838, and was immediately adopted for applications in printing and several other fields. As described in an 1890 treatise, electrotyping produces "an exact facsimile of any object having an irregular surface, whether it be an engraved steel- or copper-plate, a wood-cut, or a form of set-up type, to be used for printing; or a medal, medallion, statue, bust, or even a natural object, for art purposes."

<span class="mw-page-title-main">Compact Disc manufacturing</span> Mass replication process for CDs

Compact disc manufacturing is the process by which commercial compact discs (CDs) are replicated in mass quantities using a master version created from a source recording. This may be either in audio form (CD-DA) or data form (CD-ROM). This process is used in the mastering of read-only compact discs. DVDs and Blu-rays use similar methods.

Electrometallurgy is a method in metallurgy that uses electrical energy to produce metals by electrolysis. It is usually the last stage in metal production and is therefore preceded by pyrometallurgical or hydrometallurgical operations. The electrolysis can be done on a molten metal oxide which is used for example to produce aluminium from aluminium oxide via the Hall-Hérault process. Electrolysis can be used as a final refining stage in pyrometallurgical metal production (electrorefining) and it is also used for reduction of a metal from an aqueous metal salt solution produced by hydrometallurgy (electrowinning).

<span class="mw-page-title-main">LIGA</span> Fabrication technology used to create high-aspect-ratio microstructures

LIGA is a fabrication technology used to create high-aspect-ratio microstructures. The term is a German acronym for Lithographie, Galvanoformung, Abformung – lithography, electroplating, and molding.

<span class="mw-page-title-main">Electroless nickel-phosphorus plating</span>

Electroless nickel-phosphorus plating, also referred to as E-nickel, is a chemical process that deposits an even layer of nickel-phosphorus alloy on the surface of a solid substrate, like metal or plastic. The process involves dipping the substrate in a water solution containing nickel salt and a phosphorus-containing reducing agent, usually a hypophosphite salt. It is the most common version of electroless nickel plating and is often referred by that name. A similar process uses a borohydride reducing agent, yielding a nickel-boron coating instead.

<span class="mw-page-title-main">Grinding (abrasive cutting)</span> Machining process using a grinding wheel

Grinding is a type of abrasive machining process which uses a grinding wheel as cutting tool.

A molded interconnect device (MID) is an injection-molded thermoplastic part with integrated electronic circuit traces. The use of high temperature thermoplastics and their structured metallization opens a new dimension of circuit carrier design to the electronics industry. This technology combines plastic substrate/housing with circuitry into a single part by selective metallization.

Nickel electroplating is a technique of electroplating a thin layer of nickel onto a metal object. The nickel layer can be decorative, provide corrosion resistance, wear resistance, or used to build up worn or undersized parts for salvage purposes.

Reactive bonding describes a wafer bonding procedure using highly reactive nanoscale multilayer systems as an intermediate layer between the bonding substrates. The multilayer system consists of two alternating different thin metallic films. The self-propagating exothermic reaction within the multilayer system contributes the local heat to bond the solder films. Based on the limited temperature the substrate material is exposed, temperature-sensitive components and materials with different CTEs, i.e. metals, polymers and ceramics, can be used without thermal damage.

Localized pulsed electrodeposition (L-PED) is a technique for direct 3D printing of free-standing and layer-by-layer micro/nano-scale metallic structures at the tip of an electrolyte containing nozzle. The method follows the same principle for metal deposition as the traditional electrodeposition (electroplating), however the area of deposition is limited by the size of a liquid bridge (meniscus) formed between the nozzle tip and the substrate. The unique advantage of the L-PED process is the possibility of the control over the spatial microstructure of the printed metal in 3D geometries by adjusting deposition parameters. This method can be used in various applications in nanotechnology, in particular for 3-dimensional electronics and sensors.

Electroless copper plating is a chemical process that deposits an even layer of copper on the surface of a solid substrate, like metal or plastic. The process involves dipping the substrate in a water solution containing copper salts and a reducing agent such as formaldehyde.

References

  1. Journal of Applied Electrochemistry 1979 407-410 Periodic reverse current electroplating and surface finishing. M.I. Ismail
  2. The electroforming process, archived from the original on 2010-02-12, retrieved 2010-02-02.

Further reading