This article includes a list of general references, but it lacks sufficient corresponding inline citations .(February 2018) |
In the larger context of the Navier-Stokes equations (and especially in the context of potential theory), elementary flows are basic flows that can be combined, using various techniques, to construct more complex flows. In this article the term "flow" is used interchangeably with the term "solution" due to historical reasons.
The techniques involved to create more complex solutions can be for example by superposition, by techniques such as topology or considering them as local solutions on a certain neighborhood, subdomain or boundary layer and to be patched together. Elementary flows can be considered the basic building blocks (fundamental solutions, local solutions and solitons) of the different types of equations derived from the Navier-Stokes equations. Some of the flows reflect specific constraints such as incompressible or irrotational flows, or both, as in the case of potential flow, and some of the flows may be limited to the case of two dimensions. [1]
Due to the relationship between fluid dynamics and field theory, elementary flows are relevant not only to aerodynamics but to all field theory in general. To put it in perspective boundary layers can be interpreted as topological defects on generic manifolds, and considering fluid dynamics analogies and limit cases in electromagnetism, quantum mechanics and general relativity one can see how all these solutions are at the core of recent developments in theoretical physics such as the ads/cft duality, the SYK model, the physics of nematic liquids, strongly correlated systems and even to quark gluon plasmas.
For steady-state, spatially uniform flow of a fluid in the xy plane, the velocity vector is
where
Because this flow is incompressible (i.e., ) and two-dimensional, its velocity can be expressed in terms of a stream function, :
where
and is a constant.
In cylindrical coordinates:
and
This flow is irrotational (i.e., ) so it velocity can be expressed in terms of a potential function, :
where
and is a constant.
The case of a vertical line emitting at a fixed rate a constant quantity of fluid Q per unit length is a line source. The problem has a cylindrical symmetry and can be treated in two dimensions on the orthogonal plane.
Line sources and line sinks (below) are important elementary flows because they play the role of monopole for incompressible fluids (which can also be considered examples of solenoidal fields i.e. divergence free fields). Generic flow patterns can be also de-composed in terms of multipole expansions, in the same manner as for electric and magnetic fields where the monopole is essentially the first non-trivial (e.g. constant) term of the expansion.
This flow pattern is also both irrotational and incompressible.
This is characterized by a cylindrical symmetry:
Where the total outgoing flux is constant
Therefore,
This is derived from a stream function
or from a potential function
The case of a vertical line absorbing at a fixed rate a constant quantity of fluid Q per unit length is a line sink. Everything is the same as the case of a line source a part from the negative sign.
This is derived from a stream function
or from a potential function
Given that the two results are the same a part from a minus sign we can treat transparently both line sources and line sinks with the same stream and potential functions permitting Q to assume both positive and negative values and absorbing the minus sign into the definition of Q.
If we consider a line source and a line sink at a distance d we can reuse the results above and the stream function will be
The last approximation is to the first order in d.
Given
It remains
The velocity is then
And the potential instead
This is the case of a vortex filament rotating at constant speed, there is a cylindrical symmetry and the problem can be solved in the orthogonal plane.
Dual to the case above of line sources, vortex lines play the role of monopoles for irrotational flows.
Also in this case the flow is also both irrotational and incompressible and therefore a case of potential flow.
This is characterized by a cylindrical symmetry:
Where the total circulation is constant for every closed line around the central vortex
and is zero for any line not including the vortex.
Therefore,
This is derived from a stream function
or from a potential function
Which is dual to the previous case of a line source
Given an incompressible two-dimensional flow which is also irrotational we have:
Which is in cylindrical coordinates [2]
We look for a solution with separated variables:
which gives
Given the left part depends only on r and the right parts depends only on , the two parts must be equal to a constant independent from r and . The constant shall be positive[ clarification needed ]. Therefore,
The solution to the second equation is a linear combination of and In order to have a single-valued velocity (and also a single-valued stream function) m shall be a positive integer.
therefore the most generic solution is given by
The potential is instead given by
In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three numbers, : the radial distance of the radial liner connecting the point to the fixed point of origin ; the polar angle θ of the radial line r; and the azimuthal angle φ of the radial line r.
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as
The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).
In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it. Such a description typically arises in the limit of vanishing viscosity, i.e., for an inviscid fluid and with no vorticity present in the flow.
In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.
In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. A list of the spherical harmonics is available in Table of spherical harmonics.
In fluid dynamics, Stokes' law is an empirical law for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.
In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.
Spatial rotations in three dimensions can be parametrized using both Euler angles and unit quaternions. This article explains how to convert between the two representations. Actually this simple use of "quaternions" was first presented by Euler some seventy years earlier than Hamilton to solve the problem of magic squares. For this reason the dynamics community commonly refers to quaternions in this application as "Euler parameters".
In calculus, the Leibniz integral rule for differentiation under the integral sign states that for an integral of the form
In mathematical physics and differential geometry, a gravitational instanton is a four-dimensional complete Riemannian manifold satisfying the vacuum Einstein equations. They are so named because they are analogues in quantum theories of gravity of instantons in Yang–Mills theory. In accordance with this analogy with self-dual Yang–Mills instantons, gravitational instantons are usually assumed to look like four dimensional Euclidean space at large distances, and to have a self-dual Riemann tensor. Mathematically, this means that they are asymptotically locally Euclidean hyperkähler 4-manifolds, and in this sense, they are special examples of Einstein manifolds. From a physical point of view, a gravitational instanton is a non-singular solution of the vacuum Einstein equations with positive-definite, as opposed to Lorentzian, metric.
In classical mechanics, Routh's procedure or Routhian mechanics is a hybrid formulation of Lagrangian mechanics and Hamiltonian mechanics developed by Edward John Routh. Correspondingly, the Routhian is the function which replaces both the Lagrangian and Hamiltonian functions. Routhian mechanics is equivalent to Lagrangian mechanics and Hamiltonian mechanics, and introduces no new physics. It offers an alternative way to solve mechanical problems.
In quantum mechanics, the angular momentum operator is one of several related operators analogous to classical angular momentum. The angular momentum operator plays a central role in the theory of atomic and molecular physics and other quantum problems involving rotational symmetry. Such an operator is applied to a mathematical representation of the physical state of a system and yields an angular momentum value if the state has a definite value for it. In both classical and quantum mechanical systems, angular momentum is one of the three fundamental properties of motion.
In physics, spherical multipole moments are the coefficients in a series expansion of a potential that varies inversely with the distance R to a source, i.e., as Examples of such potentials are the electric potential, the magnetic potential and the gravitational potential.
In special functions, a topic in mathematics, spin-weighted spherical harmonics are generalizations of the standard spherical harmonics and—like the usual spherical harmonics—are functions on the sphere. Unlike ordinary spherical harmonics, the spin-weighted harmonics are U(1) gauge fields rather than scalar fields: mathematically, they take values in a complex line bundle. The spin-weighted harmonics are organized by degree l, just like ordinary spherical harmonics, but have an additional spin weights that reflects the additional U(1) symmetry. A special basis of harmonics can be derived from the Laplace spherical harmonics Ylm, and are typically denoted by sYlm, where l and m are the usual parameters familiar from the standard Laplace spherical harmonics. In this special basis, the spin-weighted spherical harmonics appear as actual functions, because the choice of a polar axis fixes the U(1) gauge ambiguity. The spin-weighted spherical harmonics can be obtained from the standard spherical harmonics by application of spin raising and lowering operators. In particular, the spin-weighted spherical harmonics of spin weight s = 0 are simply the standard spherical harmonics:
In geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.
In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.
In mathematics, potential flow around a circular cylinder is a classical solution for the flow of an inviscid, incompressible fluid around a cylinder that is transverse to the flow. Far from the cylinder, the flow is unidirectional and uniform. The flow has no vorticity and thus the velocity field is irrotational and can be modeled as a potential flow. Unlike a real fluid, this solution indicates a net zero drag on the body, a result known as d'Alembert's paradox.
In fluid mechanics, a two-dimensional flow is a form of fluid flow where the flow velocity at every point is parallel to a fixed plane. The velocity at any point on a given normal to that fixed plane should be constant.
In physics and engineering, the radiative heat transfer from one surface to another is the equal to the difference of incoming and outgoing radiation from the first surface. In general, the heat transfer between surfaces is governed by temperature, surface emissivity properties and the geometry of the surfaces. The relation for heat transfer can be written as an integral equation with boundary conditions based upon surface conditions. Kernel functions can be useful in approximating and solving this integral equation.
{{cite web}}
: CS1 maint: numeric names: authors list (link)