Elementary flow

Last updated

In the larger context of the Navier-Stokes equations (and especially in the context of potential theory), elementary flows are a collection of basic flows from which it is possible to construct more complex flows with different techniques. In this article the term flows is used interchangeably to the term solutions due to historical reasons.

Contents

The techniques involved to create more complex solutions can be for example by superposition, by techniques such as topology or considering them as local solutions on a certain neighborhood, subdomain or boundary layer and to be patched together. Elementary flows can be considered the basic building blocks (Fundamental solutions, local solutions and solitons) of the different types of equations derived from the Navier-Stokes. Some of the flows reflect specific cases constraints such as incompressible or irrotational flows, or both, as in the case of potential flow, and some of the flows are often limited in the case of 2 dimensions. [1]

Due to the relation from fluid dynamics to all field theory it is important to understand how all these flows are relevant not only to aerodynamics but to all field theory in general. To put it in perspective boundary layers can be interpreted as topological defects on generic manifolds, and considering fluid dynamics analogies and limit cases in electromagnetism, quantum mechanics and general relativity one can see how all these solutions are at the core of recent developments in theoretical physics such as the ads/cft duality, the SYK model, the physics of nematic liquids, strongly correlated systems and even to quark gluon plasmas.

Two-dimensional uniform flow

Potential flow streamlines for an ideal uniform flow Flow-uniform-2D.svg
Potential flow streamlines for an ideal uniform flow

Given a uniform velocity of a fluid at any position in space:

This flow is incompressible because the velocity is constant, the first derivatives of the velocity components are zero, and the total divergence is zero:

Given the circulation is always zero the flow is also irrotational, we can derive this from the Kelvin's circulation theorem and from the explicit computation of the vorticity:

Being incompressible and two-dimensional, this flow is constructed from a stream function:

from which

and in cylindrical coordinates:

from which

As usual the stream function is defined up to a constant value which here we take as zero. We can also confirm that the flow is irrotational from:

Being irrotational, the potential function is instead:

and therefore

and in cylindrical coordinates

Two-dimensional line source

Potential flow streamlines for an ideal line source Flow-source-2D.svg
Potential flow streamlines for an ideal line source

The case of a vertical line emitting at a fixed rate a constant quantity of fluid Q per unit length is a line source. The problem has a cylindrical symmetry and can be treated in two dimension on the orthogonal plane.

Line sources and line sinks (below) are important elementary flows because they play the role of monopole(s) for incompressible fluids (which can also be considered examples of solenoidal fields i.e. divergence free fields). Generic flow patterns can be also de-composed in terms of multipole expansions, in the same manner as for electric and magnetic fields where the monopole is essentially the first non-trivial (e.g. constant) term of the expansion.

This flow pattern is also both irrotational and incompressible.

This is characterized by a cylindrical symmetry:

Where the total outgoing flux is constant

Therefore,

This is derived from a stream function

or from a potential function

Two-dimensional line sink

The case of a vertical line absorbing at a fixed rate a constant quantity of fluid Q per unit length is a line sink. Everything is the same as the case of a line source a part from the negative sign.

This is derived from a stream function

or from a potential function

Given that the two results are the same a part from a minus sign we can treat transparently both line sources and line sinks with the same stream and potential functions permitting Q to assume both positive and negative values and absorbing the minus sign into the definition of Q.

Two-dimensional doublet or dipole line source

Potential flow streamlines for an ideal doublet, or dipole, line Flow-doublet-2D.svg
Potential flow streamlines for an ideal doublet, or dipole, line

If we consider a line source and a line sink at a distance d we can reuse the results above and the stream function will be

The last approximation is to the first order in d.

Given

It remains

The velocity is then

And the potential instead

Two-dimensional vortex line

Potential flow streamlines for an ideal vortex line Flow-vortex-2D.svg
Potential flow streamlines for an ideal vortex line

This is the case of a vortex filament rotating at constant speed, there is a cylindrical symmetry and the problem can be solved in the orthogonal plane.

Dual to the case above of line sources, vortex lines play the role of monopoles for irrotational flows.

Also in this case the flow is also both irrotational and incompressible and therefore a case of potential flow.

This is characterized by a cylindrical symmetry:

Where the total circulation is constant for every closed line around the central vortex

and is zero for any line not including the vortex.

Therefore,

This is derived from a stream function

or from a potential function

Which is dual to the previous case of a line source

Generic two-dimensional potential flow

Given an incompressible two-dimensional flow which is also irrotational we have:

Which is in cylindrical coordinates [2]

We look for a solution with separated variables:

which gives

Given the left part depends only on r and the right parts depends only on , the two parts must be equal to a constant independent from r and . The constant shall be positive[ clarification needed ]. Therefore,

The solution to the second equation is a linear combination of and In order to have a single-valued velocity (and also a single-valued stream function) m shall be a positive integer.

therefore the most generic solution is given by

The potential is instead given by

Related Research Articles

<span class="mw-page-title-main">Spherical coordinate system</span> 3-dimensional coordinate system

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three numbers, : the radial distance of the radial liner connecting the point to the fixed point of origin ; the polar angle θ of the radial line r; and the azimuthal angle φ of the radial line r.

<span class="mw-page-title-main">Laplace's equation</span> Second-order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Potential flow</span> Velocity field as the gradient of a scalar function

In fluid dynamics, potential flow is the ideal flow pattern of an inviscid fluid. Potential flows are described and determined by mathematical methods.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

In linear algebra, two vectors in an inner product space are orthonormal if they are orthogonal unit vectors. A unit vector means that the vector has a length of 1, which is also known as normalized. Orthogonal means that the vectors are all perpendicular to each other. A set of vectors form an orthonormal set if all vectors in the set are mutually orthogonal and all of unit length. An orthonormal set which forms a basis is called an orthonormal basis.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. A list of the spherical harmonics is available in Table of spherical harmonics.

In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.

Spatial rotations in three dimensions can be parametrized using both Euler angles and unit quaternions. This article explains how to convert between the two representations. Actually this simple use of "quaternions" was first presented by Euler some seventy years earlier than Hamilton to solve the problem of magic squares. For this reason the dynamics community commonly refers to quaternions in this application as "Euler parameters".

In mathematical physics and differential geometry, a gravitational instanton is a four-dimensional complete Riemannian manifold satisfying the vacuum Einstein equations. They are so named because they are analogues in quantum theories of gravity of instantons in Yang–Mills theory. In accordance with this analogy with self-dual Yang–Mills instantons, gravitational instantons are usually assumed to look like four dimensional Euclidean space at large distances, and to have a self-dual Riemann tensor. Mathematically, this means that they are asymptotically locally Euclidean hyperkähler 4-manifolds, and in this sense, they are special examples of Einstein manifolds. From a physical point of view, a gravitational instanton is a non-singular solution of the vacuum Einstein equations with positive-definite, as opposed to Lorentzian, metric.

<span class="mw-page-title-main">Routhian mechanics</span> Formulation of classical mechanics

In classical mechanics, Routh's procedure or Routhian mechanics is a hybrid formulation of Lagrangian mechanics and Hamiltonian mechanics developed by Edward John Routh. Correspondingly, the Routhian is the function which replaces both the Lagrangian and Hamiltonian functions. Routhian mechanics is equivalent to Lagrangian mechanics and Hamiltonian mechanics, and introduces no new physics. It offers an alternative way to solve mechanical problems.

In special functions, a topic in mathematics, spin-weighted spherical harmonics are generalizations of the standard spherical harmonics and—like the usual spherical harmonics—are functions on the sphere. Unlike ordinary spherical harmonics, the spin-weighted harmonics are U(1) gauge fields rather than scalar fields: mathematically, they take values in a complex line bundle. The spin-weighted harmonics are organized by degree l, just like ordinary spherical harmonics, but have an additional spin weights that reflects the additional U(1) symmetry. A special basis of harmonics can be derived from the Laplace spherical harmonics Ylm, and are typically denoted by sYlm, where l and m are the usual parameters familiar from the standard Laplace spherical harmonics. In this special basis, the spin-weighted spherical harmonics appear as actual functions, because the choice of a polar axis fixes the U(1) gauge ambiguity. The spin-weighted spherical harmonics can be obtained from the standard spherical harmonics by application of spin raising and lowering operators. In particular, the spin-weighted spherical harmonics of spin weight s = 0 are simply the standard spherical harmonics:

In geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.

There are several equivalent ways for defining trigonometric functions, and the proofs of the trigonometric identities between them depend on the chosen definition. The oldest and most elementary definitions are based on the geometry of right triangles. The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles, see Trigonometric functions.

In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.

<span class="mw-page-title-main">Gravitational lensing formalism</span>

In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to

In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.

<span class="mw-page-title-main">Potential flow around a circular cylinder</span> Classical solution for inviscid, incompressible flow around a cyclinder

In mathematics, potential flow around a circular cylinder is a classical solution for the flow of an inviscid, incompressible fluid around a cylinder that is transverse to the flow. Far from the cylinder, the flow is unidirectional and uniform. The flow has no vorticity and thus the velocity field is irrotational and can be modeled as a potential flow. Unlike a real fluid, this solution indicates a net zero drag on the body, a result known as d'Alembert's paradox.

In fluid mechanics, a two-dimensional flow is a form of fluid flow where the flow velocity at every point is parallel to a fixed plane. The velocity at any point on a given normal to that fixed plane should be constant.

In the field of fluid dynamics, a Rankine half body is a feature of fluid flow discovered by Scottish physicist and engineer William Rankine that is formed when a fluid source is added to a fluid undergoing potential flow. Superposition of uniform flow and source flow yields the Rankine half body flow. A practical example of this type of flow is a bridge pier or a strut placed in a uniform stream. The resulting stream function and velocity potential are obtained by simply adding the stream function and velocity potential for each individual flow.

References

Specific
  1. Oliver, David (2013-03-14). The Shaggy Steed of Physics: Mathematical Beauty in the Physical World. Springer Science & Business Media. ISBN   978-1-4757-4347-0.
  2. Laplace operator

Further reading