Eleonora Troja

Last updated
Eleonora Troja
Eleonora Troja.jpg
Alma mater University of Palermo (BA, MPhil, PhD)
Awards NASA Silver Achievement Medal (2018)
NASA Exceptional Scientific Achievement Medal (2021)
Scientific career
FieldsAstrophysics
Institutions Goddard Space Flight Center
University of Maryland, College Park
Thesis Gamma-ray bursts in the Swift era: evidence of long lived central engines and implications for progenitor models (2009)
Doctoral advisor Giancarlo Cusumano
Other academic advisors Giovanni Peres
Fabio Reale
Neil Gehrels
Website eleonoratroja.wordpress.com

Eleonora Troja is an Italian astrophysicist. In 2017 she led the discovery of X-ray emission from the gravitational wave source GW170817. [1] [2] [3] [4]

Contents

Education

Troja completed a B.A. in physics and astronomy at University of Palermo in 2002. She completed a thesis, X-ray spectroscopy of He-like ions in optically thin astrophysical plasmas, under supervisor Giovanni Peres. Troja earned a M.Phil. in physics and astronomy at Palermo in 2005 under Fabio Reale. Her graduate thesis was titled XMM-Newton observations of the supernova remnant IC 443: analysis of the thermal X-ray emission. She completed a Ph.D. in physics and astronomy in 2009 under advisor Giancarlo Cusumano. Her dissertation was titled Gamma-ray bursts in the Swift era: evidence of long lived central engines and implications for progenitor models. From July 2009 to July 2012, Troja was a postdoctoral fellow at Goddard Space Flight Center (GSFC) under advisor Neil Gehrels. [5]

Career

In July 2013, Troja became the Swift Guest Investigator Program Lead at NASA GSFC. In 2021 she joined the University of Rome Tor Vergata as Associate Professor.

Research

Troja researches high energy astrophysics, gamma-ray bursts (GRB), and electromagnetic counterparts of gravitational waves. In her career Troja worked on a variety of different aspects of the GRB phenomenon, although her focus is the connection between short duration GRBs, neutron star mergers, and gravitational wave sources. [5] In 2017 she led the discovery of X-ray emission from the gravitational wave source GW170817. [1] [2] [3] [4]

Troja's main interest is to investigate the observational signatures of compact binary mergers, that is, binary systems composed by either two neutron stars (NS-NS) or a neutron star and a black hole (NS-BH) which slowly spiral into each other and eventually collide due to energy losses to gravitational radiation. Compact binary mergers lie at the intersection of several key aspects of modern astrophysics:

These three fundamental areas of investigation are at the core of Troja's research. [5]

Awards and honors

Troja has won the following awards:

Related Research Articles

<span class="mw-page-title-main">Neutron star</span> Collapsed core of a massive star

A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses (M), possibly more if the star was especially metal-rich. Except for black holes, neutron stars are the smallest and densest known class of stellar objects. Neutron stars have a radius on the order of 10 kilometers (6 mi) and a mass of about 1.4 M. They result from the supernova explosion of a massive star, combined with gravitational collapse, that compresses the core past white dwarf star density to that of atomic nuclei.

<span class="mw-page-title-main">Gamma-ray burst</span> Flashes of gamma rays from distant galaxies

In gamma-ray astronomy, gamma-ray bursts (GRBs) are immensely energetic explosions that have been observed in distant galaxies, described by NASA as "the most powerful class of explosions in the universe". They are the most energetic and luminous electromagnetic events since the Big Bang. Bursts can last from ten milliseconds to several hours. After an initial flash of gamma rays, a longer-lived "afterglow" is usually emitted at longer wavelengths.

<span class="mw-page-title-main">Magnetar</span> Type of neutron star with a strong magnetic field

A magnetar is a type of neutron star with an extremely powerful magnetic field (~109 to 1011 T, ~1013 to 1015 G). The magnetic-field decay powers the emission of high-energy electromagnetic radiation, particularly X-rays and gamma rays.

<span class="mw-page-title-main">Fermi Gamma-ray Space Telescope</span> Space telescope for gamma-ray astronomy launched in 2008

The Fermi Gamma-ray Space Telescope, formerly called the Gamma-ray Large Area Space Telescope (GLAST), is a space observatory being used to perform gamma-ray astronomy observations from low Earth orbit. Its main instrument is the Large Area Telescope (LAT), with which astronomers mostly intend to perform an all-sky survey studying astrophysical and cosmological phenomena such as active galactic nuclei, pulsars, other high-energy sources and dark matter. Another instrument aboard Fermi, the Gamma-ray Burst Monitor, is being used to study gamma-ray bursts and solar flares.

<span class="mw-page-title-main">Neil Gehrels Swift Observatory</span> NASA satellite of the Explorer program

Neil Gehrels Swift Observatory, previously called the Swift Gamma-Ray Burst Explorer, is a NASA three-telescope space observatory for studying gamma-ray bursts (GRBs) and monitoring the afterglow in X-ray, and UV/Visible light at the location of a burst. It was launched on 20 November 2004, aboard a Delta II launch vehicle. Headed by principal investigator Neil Gehrels until his death in February 2017, the mission was developed in a joint partnership between Goddard Space Flight Center (GSFC) and an international consortium from the United States, United Kingdom, and Italy. The mission is operated by Pennsylvania State University as part of NASA's Medium Explorer program (MIDEX).

<span class="mw-page-title-main">Neil Gehrels</span> American astrophysicist

Cornelis A. "Neil" Gehrels was an American astrophysicist specializing in the field of gamma-ray astronomy. He was Chief of the Astroparticle Physics Laboratory at NASA's Goddard Space Flight Center (GSFC) from 1995 until his death, and was best known for his work developing the field from early balloon instruments to today's space observatories such as the NASA Swift mission, for which he was the principal investigator. He was leading the WFIRST wide-field infrared telescope forward toward a launch in the mid-2020s. He was a member of the National Academy of Sciences and the American Academy of Arts and Sciences.

<span class="mw-page-title-main">Gamma-ray burst progenitors</span> Types of celestial objects that can emit gamma-ray bursts

Gamma-ray burst progenitors are the types of celestial objects that can emit gamma-ray bursts (GRBs). GRBs show an extraordinary degree of diversity. They can last anywhere from a fraction of a second to many minutes. Bursts could have a single profile or oscillate wildly up and down in intensity, and their spectra are highly variable unlike other objects in space. The near complete lack of observational constraint led to a profusion of theories, including evaporating black holes, magnetic flares on white dwarfs, accretion of matter onto neutron stars, antimatter accretion, supernovae, hypernovae, and rapid extraction of rotational energy from supermassive black holes, among others.

Nial Rahil Tanvir is a British astronomer at the University of Leicester. His research specialisms are the Extragalactic distance scale, Galaxy evolution and Gamma ray bursts. Tanvir has featured in various TV programs, including The Sky at Night hosted by Sir Patrick Moore, and Horizon

<span class="mw-page-title-main">GRB 101225A</span> Gamma-ray burst event of December 25, 2010

GRB 101225A, also known as the "Christmas burst", was a cosmic explosion first detected by NASA's Swift observatory on Christmas Day 2010. The gamma-ray emission lasted at least 28 minutes, which is unusually long. Follow-up observations of the burst's afterglow by the Hubble Space Telescope and ground-based observatories were unable to determine the object's distance using spectroscopic methods.

<span class="mw-page-title-main">Neutron star merger</span> Type of stellar collision

A neutron star merger is the stellar collision of neutron stars.

<span class="mw-page-title-main">Kilonova</span> Neutron star merger

A kilonova is a transient astronomical event that occurs in a compact binary system when two neutron stars or a neutron star and a black hole merge. These mergers are thought to produce gamma-ray bursts and emit bright electromagnetic radiation, called "kilonovae", due to the radioactive decay of heavy r-process nuclei that are produced and ejected fairly isotropically during the merger process. The measured high sphericity of the kilonova AT2017gfo at early epochs was deduced from the blackbody nature of its spectrum.

Multi-messenger astronomy is astronomy based on the coordinated observation and interpretation of signals carried by disparate "messengers": electromagnetic radiation, gravitational waves, neutrinos, and cosmic rays. They are created by different astrophysical processes, and thus reveal different information about their sources.

<span class="mw-page-title-main">GW170817</span> Gravitational-wave signal detected in 2017

GW 170817 was a gravitational wave (GW) signal observed by the LIGO and Virgo detectors on 17 August 2017, originating from the shell elliptical galaxy NGC 4993. The signal was produced by the last moments of the inspiral process of a binary pair of neutron stars, ending with their merger. It is the first GW observation that has been confirmed by non-gravitational means. Unlike the five previous GW detections—which were of merging black holes, and thus not expected to produce a detectable electromagnetic signal—the aftermath of this merger was seen across the electromagnetic spectrum by 70 observatories on 7 continents and in space, marking a significant breakthrough for multi-messenger astronomy. The discovery and subsequent observations of GW 170817 were given the Breakthrough of the Year award for 2017 by the journal Science.

<span class="mw-page-title-main">NGC 4993</span> Galaxy in the constellation of Hydra

NGC 4993 is a lenticular galaxy located about 140 million light-years away in the constellation Hydra. It was discovered on 26 March 1789 by William Herschel and is a member of the NGC 4993 Group.

PyCBC is an open source software package primarily written in the Python programming language which is designed for use in gravitational-wave astronomy and gravitational-wave data analysis. PyCBC contains modules for signal processing, FFT, matched filtering, gravitational waveform generation, among other tasks common in gravitational-wave data analysis.

Daryl Haggard is an American-Canadian astronomer and associate professor of physics in the Department of Physics at McGill University and the McGill Space Institute.

<span class="mw-page-title-main">GRB 150101B</span>

GRB 150101B is a gamma-ray burst (GRB) that was detected on 1 January 2015 at 15:23 UT by the Burst Alert Telescope (BAT) on board the Swift Observatory Satellite, and at 15:23:35 UT by the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope. The GRB was determined to be 1.7 billion light-years (0.52 Gpc) from Earth near the host galaxy 2MASX J12320498-1056010 in the constellation Virgo. The characteristics of GRB 150101B are remarkably similar to the historic event GW170817, a merger of neutron stars.

<span class="mw-page-title-main">GRB 230307A</span>

GRB 230307A was an extremely bright, long duration gamma-ray burst (GRB), likely produced as a consequence of a neutron star merger or black hole - neutron star merger event. The gamma-ray burst was observed to have a gamma ray fluence of 3×10-4 erg cm-2 in the 10 to 1000 KeV (electronvolt) range making it second only to GRB 221009A, which was an extremely bright and long duration gamma ray burst deemed to be the brightest of all time. This also means that it is 1000 times more powerful than a typical gamma-ray burst. The burst had the second-highest gamma-ray fluence ever recorded. The James Webb Space Telescope (JWST) detected the chemical signature for tellurium (Te). The neutron stars were once part of a spiral galaxy (host galaxy) but were kicked out via gravitational interactions. Then while outside of the main galaxy at a distance of 120,000 light years, they merged, creating GRB 230307A.

References

  1. 1 2 Potter, Sean (2017-10-16). "NASA Missions Catch First Light from a Gravitational-Wave Event". NASA. Retrieved 2019-10-13.
  2. 1 2 mewright (2017-10-16). "Neutron Star Merger Directly Observed for the First Time". College of Computer, Mathematical, and Natural Sciences. Archived from the original on 2019-10-13. Retrieved 2019-10-13.
  3. 1 2 "Astronomers Feast on First Light From Gravitational Wave Event". Gemini Observatory. 2017-10-16. Retrieved 2019-10-13.
  4. 1 2 "Chandra Makes First Detection of X-rays from a Gravitational Wave Source: Interview with Chandra Scientist Eleonora Nora Troja". chandra.si.edu. Retrieved 2019-10-13.
  5. 1 2 3 "Bio - Eleonora Troja". science.gsfc.nasa.gov. Archived from the original on 2019-09-24. Retrieved 2019-09-24.
  6. "Home Page - Instrument Development Group - 660.3". NASA. 2022-02-08. Retrieved 2022-02-10.
  7. "Awards Won - Search Results - Sciences and Exploration Directorate - 600". science.gsfc.nasa.gov. Retrieved 2019-10-13.
  8. "UMD Astronomy: 2018 News". www.astro.umd.edu. Retrieved 2019-10-13.

PD-icon.svg This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration .