Emily Lowell Warren | |
---|---|
Alma mater | California Institute of Technology Cornell University University of Cambridge |
Scientific career | |
Institutions | National Renewable Energy Laboratory |
Thesis | Silicon Microwire Arrays for Photoelectrochemical and Photovoltaic Applications (2013) |
Doctoral advisors |
Emily Warren is an American chemical engineer who is a staff scientist at the National Renewable Energy Laboratory. Her research considers high efficiency crystalline photovoltaics.
Warren became interested in science as a child. At elementary school, she campaigned to save the rainforest. [1] Warren was an undergraduate student at Cornell University, where she studied chemical engineering and became aware of the energy industry. [1] [2] She travelled to Nigeria for a course on sustainable development. [1] She was a graduate student at California Institute of Technology. Her research considered the growth of silicon microwire arrays using vapor–liquid–solid methods. These strategies could be used to produce high aspect ratio structures that are efficient in photovoltaics [3] and have a high surface area for use in catalysis and as electrodes in water splitting. [4] [5] After earning her doctorate, she briefly considered working in industry, but instead joined the Colorado School of Mines to work on solar thermoelectric generator projects. [6]
Warren joined the National Renewable Energy Laboratory in 2014, where she started working on electrochemical measurements of semiconductor materials. [4] [7] Her research considers heteroepitaxy of III-V semiconductors. [8] In particular, she is interested in how the nanostructure impacts coalescence and performance. [ citation needed ]
Warren has worked on tandem solar cells, multi-layer devices that combine various photovoltaic materials of narrow and wide badgaps to form efficient multi-junction devices. [9] Silicon is used as the bottom cell for many tandem solar cells owing to its high efficiency and well-established fabrication protocols. [8] Warren used computational modelling to demonstrate that a three-terminal device, [10] consisting of a top cell in series with an interdigitated back contact silicon cell with a conductive top contact, was more efficient than a two- or four-terminal device. [9] She showed that it was possible to make highly efficient, highly stable all perovskite tandem solar cells. [11] [12]
Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commercially used for electricity generation and as photosensors.
A "photoelectrochemical cell" is one of two distinct classes of device. The first produces electrical energy similarly to a dye-sensitized photovoltaic cell, which meets the standard definition of a photovoltaic cell. The second is a photoelectrolytic cell, that is, a device which uses light incident on a photosensitizer, semiconductor, or aqueous metal immersed in an electrolytic solution to directly cause a chemical reaction, for example to produce hydrogen via the electrolysis of water.
In the 19th century, it was observed that the sunlight striking certain materials generates detectable electric current – the photoelectric effect. This discovery laid the foundation for solar cells. Solar cells have gone on to be used in many applications. They have historically been used in situations where electrical power from the grid was unavailable.
A dye-sensitized solar cell is a low-cost solar cell belonging to the group of thin film solar cells. It is based on a semiconductor formed between a photo-sensitized anode and an electrolyte, a photoelectrochemical system. The modern version of a dye solar cell, also known as the Grätzel cell, was originally co-invented in 1988 by Brian O'Regan and Michael Grätzel at UC Berkeley and this work was later developed by the aforementioned scientists at the École Polytechnique Fédérale de Lausanne (EPFL) until the publication of the first high efficiency DSSC in 1991. Michael Grätzel has been awarded the 2010 Millennium Technology Prize for this invention.
A solar cell or photovoltaic cell is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect. It is a form of photoelectric cell, a device whose electrical characteristics vary when it is exposed to light. Individual solar cell devices are often the electrical building blocks of photovoltaic modules, known colloquially as "solar panels". Almost all commercial PV cells consist of crystalline silicon, with a market share of 95%. Cadmium telluride thin-film solar cells account for the remainder. The common single-junction silicon solar cell can produce a maximum open-circuit voltage of approximately 0.5 to 0.6 volts.
Harry Albert Atwater, Jr. is an American physicist and materials scientist and is the Otis Booth Leadership Chair of the division of engineering and applied science at the California Institute of Technology. Currently he is the Howard Hughes Professor of Applied Physics and Materials Science and the director for the Liquid Sunlight Alliance (LiSA), a Department of Energy Hub program for solar fuels. Atwater's scientific effort focuses on nanophotonic light-matter interactions and solar energy conversion. His current research in energy centers on high efficiency photovoltaics, carbon capture and removal, and photoelectrochemical processes for generation of solar fuels. His research has resulted in world records for solar photovoltaic conversion and photoelectrochemical water splitting. His work also spans fundamental nanophotonic phenomena, in plasmonics and 2D materials, and also applications including active metasurfaces and optical propulsion.
Third-generation photovoltaic cells are solar cells that are potentially able to overcome the Shockley–Queisser limit of 31–41% power efficiency for single bandgap solar cells. This includes a range of alternatives to cells made of semiconducting p-n junctions and thin film cells. Common third-generation systems include multi-layer ("tandem") cells made of amorphous silicon or gallium arsenide, while more theoretical developments include frequency conversion,, hot-carrier effects and other multiple-carrier ejection techniques.
Thin-film solar cells are a type of solar cell made by depositing one or more thin layers of photovoltaic material onto a substrate, such as glass, plastic or metal. Thin-film solar cells are typically a few nanometers (nm) to a few microns (μm) thick–much thinner than the wafers used in conventional crystalline silicon (c-Si) based solar cells, which can be up to 200 μm thick. Thin-film solar cells are commercially used in several technologies, including cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and amorphous thin-film silicon.
Solar-cell efficiency is the portion of energy in the form of sunlight that can be converted via photovoltaics into electricity by the solar cell.
Nanocrystal solar cells are solar cells based on a substrate with a coating of nanocrystals. The nanocrystals are typically based on silicon, CdTe or CIGS and the substrates are generally silicon or various organic conductors. Quantum dot solar cells are a variant of this approach which take advantage of quantum mechanical effects to extract further performance. Dye-sensitized solar cells are another related approach, but in this case the nano-structuring is a part of the substrate.
Photoelectrochemistry is a subfield of study within physical chemistry concerned with the interaction of light with electrochemical systems. It is an active domain of investigation. One of the pioneers of this field of electrochemistry was the German electrochemist Heinz Gerischer. The interest in this domain is high in the context of development of renewable energy conversion and storage technology.
A perovskite solar cell (PSC) is a type of solar cell that includes a perovskite-structured compound, most commonly a hybrid organic–inorganic lead or tin halide-based material as the light-harvesting active layer. Perovskite materials, such as methylammonium lead halides and all-inorganic cesium lead halide, are cheap to produce and simple to manufacture.
Intermediate band photovoltaics in solar cell research provides methods for exceeding the Shockley–Queisser limit on the efficiency of a cell. It introduces an intermediate band (IB) energy level in between the valence and conduction bands. Theoretically, introducing an IB allows two photons with energy less than the bandgap to excite an electron from the valence band to the conduction band. This increases the induced photocurrent and thereby efficiency.
Henry James Snaith is a professor in physics in the Clarendon Laboratory at the University of Oxford. Research from his group has led to the creation of a new research field, based on halide perovskites for use as solar absorbers. Many individuals who were PhD students and postdoctoral researchers in Snaith's group have now established research groups, independent research portfolios and commercial enterprises. He co-founded Oxford Photovoltaics in 2010 to commercialise perovskite based tandem solar cells.
Light harvesting materials harvest solar energy that can then be converted into chemical energy through photochemical processes. Synthetic light harvesting materials are inspired by photosynthetic biological systems such as light harvesting complexes and pigments that are present in plants and some photosynthetic bacteria. The dynamic and efficient antenna complexes that are present in photosynthetic organisms has inspired the design of synthetic light harvesting materials that mimic light harvesting machinery in biological systems. Examples of synthetic light harvesting materials are dendrimers, porphyrin arrays and assemblies, organic gels, biosynthetic and synthetic peptides, organic-inorganic hybrid materials, and semiconductor materials. Synthetic and biosynthetic light harvesting materials have applications in photovoltaics, photocatalysis, and photopolymerization.
Shannon W. Boettcher is an American chemist and professor. He teaches in the Department of Chemistry and Biochemistry at the University of Oregon. His research is at the intersection of materials science and electrochemistry, with a focus on fundamental aspects of energy conversion and storage. He has been named a DuPont Young Professor, a Cottrell Scholar, a Sloan Fellow, and a Camille Dreyfus Teacher-Scholar. An ISI highly cited researcher, in 2019 he founded the Oregon Center for Electrochemistry and, in 2020, launched the nation's first targeted graduate program in electrochemical technology. In 2021, he was named a Blavatnik National Award Finalist.
Anita Ho-Baillie is an Australian scientist who is the John Hooke Chair of Nanoscience at the University of Sydney. Her research considers the development of durable perovskite solar cells and their integration into different applications. She was named as one of the Web of Science's most highly cited researchers in 2019–2022.
Timeline of sustainable energy research 2020– documents increases in renewable energy, solar energy, and nuclear energy, particularly for ways that are sustainable within the Solar System.
Renate Egan FTSE is the executive director of the Australian Centre for Advanced Photovoltaics, a centre for collaboration on photovoltaics research led by University of New South Wales. She is Deputy Head of School for Engagement in the School of Solar PV and Renewable Energy Engineering, at UNSW, and a fellow of the Australian Academy of Technological Sciences and Engineering.