Energetic space

Last updated

In mathematics, more precisely in functional analysis, an energetic space is, intuitively, a subspace of a given real Hilbert space equipped with a new "energetic" inner product. The motivation for the name comes from physics, as in many physical problems the energy of a system can be expressed in terms of the energetic inner product. An example of this will be given later in the article.

Contents

Energetic space

Formally, consider a real Hilbert space with the inner product and the norm . Let be a linear subspace of and be a strongly monotone symmetric linear operator, that is, a linear operator satisfying

The energetic inner product is defined as

for all in

and the energetic norm is

for all in

The set together with the energetic inner product is a pre-Hilbert space. The energetic space is defined as the completion of in the energetic norm. can be considered a subset of the original Hilbert space since any Cauchy sequence in the energetic norm is also Cauchy in the norm of (this follows from the strong monotonicity property of ).

The energetic inner product is extended from to by

where and are sequences in Y that converge to points in in the energetic norm.

Energetic extension

The operator admits an energetic extension

defined on with values in the dual space that is given by the formula

for all in

Here, denotes the duality bracket between and so actually denotes

If and are elements in the original subspace then

by the definition of the energetic inner product. If one views which is an element in as an element in the dual via the Riesz representation theorem, then will also be in the dual (by the strong monotonicity property of ). Via these identifications, it follows from the above formula that In different words, the original operator can be viewed as an operator and then is simply the function extension of from to

An example from physics

A string with fixed endpoints under the influence of a force pointing down. String illust.svg
A string with fixed endpoints under the influence of a force pointing down.

Consider a string whose endpoints are fixed at two points on the real line (here viewed as a horizontal line). Let the vertical outer force density at each point on the string be , where is a unit vector pointing vertically and Let be the deflection of the string at the point under the influence of the force. Assuming that the deflection is small, the elastic energy of the string is

and the total potential energy of the string is

The deflection minimizing the potential energy will satisfy the differential equation

with boundary conditions

To study this equation, consider the space that is, the Lp space of all square-integrable functions in respect to the Lebesgue measure. This space is Hilbert in respect to the inner product

with the norm being given by

Let be the set of all twice continuously differentiable functions with the boundary conditions Then is a linear subspace of

Consider the operator given by the formula

so the deflection satisfies the equation Using integration by parts and the boundary conditions, one can see that

for any and in Therefore, is a symmetric linear operator.

is also strongly monotone, since, by the Friedrichs's inequality

for some

The energetic space in respect to the operator is then the Sobolev space We see that the elastic energy of the string which motivated this study is

so it is half of the energetic inner product of with itself.

To calculate the deflection minimizing the total potential energy of the string, one writes this problem in the form

for all in .

Next, one usually approximates by some , a function in a finite-dimensional subspace of the true solution space. For example, one might let be a continuous piecewise linear function in the energetic space, which gives the finite element method. The approximation can be computed by solving a system of linear equations.

The energetic norm turns out to be the natural norm in which to measure the error between and , see Céa's lemma.

See also

Related Research Articles

In quantum mechanics, bra–ket notation, or Dirac notation, is used ubiquitously to denote quantum states. The notation uses angle brackets, and , and a vertical bar , to construct "bras" and "kets".

Inner product space Generalization of the dot product; used to define Hilbert spaces

In mathematics, an inner product space is a real vector space or a complex vector space with a binary operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets, as in . Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonality of vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or scalar product of Cartesian coordinates. Inner product spaces of infinite dimension are widely used in functional analysis. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces. The first usage of the concept of a vector space with an inner product is due to Giuseppe Peano, in 1898.

The Riesz representation theorem, sometimes called the Riesz–Fréchet representation theorem after Frigyes Riesz and Maurice René Fréchet, establishes an important connection between a Hilbert space and its continuous dual space. If the underlying field is the real numbers, the two are isometrically isomorphic; if the underlying field is the complex numbers, the two are isometrically anti-isomorphic. The (anti-) isomorphism is a particular natural one as will be described next; a natural isomorphism.

In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a topological vector space with respect to its continuous dual. The remainder of this article will deal with this case, which is one of the concepts of functional analysis.

The Cauchy–Schwarz inequality is considered one of the most important and widely used inequalities in mathematics.

In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. In this article, we consider generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.

In mathematics, a trace-class operator is a compact operator for which a trace may be defined, such that the trace is finite and independent of the choice of basis. Trace-class operators are essentially the same as nuclear operators, though many authors reserve the term "trace-class operator" for the special case of nuclear operators on Hilbert spaces and reserve "nuclear operator" for usage in more general topological vector spaces.

In mathematics, a linear form is a linear map from a vector space to its field of scalars.

In functional analysis, a discipline within mathematics, given a C*-algebra A, the Gelfand–Naimark–Segal construction establishes a correspondence between cyclic *-representations of A and certain linear functionals on A. The correspondence is shown by an explicit construction of the *-representation from the state. It is named for Israel Gelfand, Mark Naimark, and Irving Segal.

Projection (linear algebra)

In linear algebra and functional analysis, a projection is a linear transformation from a vector space to itself such that . That is, whenever is applied twice to any vector, it gives the same result as if it were applied once. It leaves its image unchanged. This definition of "projection" formalizes and generalizes the idea of graphical projection. One can also consider the effect of a projection on a geometrical object by examining the effect of the projection on points in the object.

Reproducing kernel Hilbert space

In functional analysis, a reproducing kernel Hilbert space (RKHS) is a Hilbert space of functions in which point evaluation is a continuous linear functional. Roughly speaking, this means that if two functions and in the RKHS are close in norm, i.e., is small, then and are also pointwise close, i.e., is small for all . The reverse does not need to be true.

In mathematics, specifically in operator theory, each linear operator on a Euclidean vector space defines a Hermitian adjoint operator on that space according to the rule

In mathematics, a Hilbert–Schmidt operator, named after David Hilbert and Erhard Schmidt, is a bounded operator that acts on a Hilbert space and has finite Hilbert–Schmidt norm

In mathematics, more specifically functional analysis and operator theory, the notion of unbounded operator provides an abstract framework for dealing with differential operators, unbounded observables in quantum mechanics, and other cases.

In mathematics, weak convergence in a Hilbert space is convergence of a sequence of points in the weak topology.

In mathematics, in the field of functional analysis, an indefinite inner product space

In mathematics, a dissipative operator is a linear operator A defined on a linear subspace D(A) of Banach space X, taking values in X such that for all λ > 0 and all xD(A)

Hilbert C*-modules are mathematical objects that generalise the notion of a Hilbert space, in that they endow a linear space with an "inner product" that takes values in a C*-algebra. Hilbert C*-modules were first introduced in the work of Irving Kaplansky in 1953, which developed the theory for commutative, unital algebras. In the 1970s the theory was extended to non-commutative C*-algebras independently by William Lindall Paschke and Marc Rieffel, the latter in a paper that used Hilbert C*-modules to construct a theory of induced representations of C*-algebras. Hilbert C*-modules are crucial to Kasparov's formulation of KK-theory, and provide the right framework to extend the notion of Morita equivalence to C*-algebras. They can be viewed as the generalization of vector bundles to noncommutative C*-algebras and as such play an important role in noncommutative geometry, notably in C*-algebraic quantum group theory, and groupoid C*-algebras.

Hilbert space Generalization of Euclidean space allowing infinite dimensions

In mathematics, Hilbert spaces allow generalizing the methods of linear algebra and calculus from the two-dimensional and three dimensional Euclidean spaces to spaces that may have an infinite dimension. A Hilbert space is a vector space equipped with an inner product operation, which allows defining a distance function and perpendicularity. Furthermore, Hilbert spaces are complete for this distance, which means that there are enough limits in the space to allow the techniques of calculus to be used.

This is a glossary for the terminology in a mathematical field of functional analysis.

References