This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
|
The Energy efficiency in Europe study is part of the Odyssee project. [1] It aims to monitor energy efficiency progress and CO2-reduction for the EU-28 countries and Norway, understand the energy demand trends for European countries, compare the countries in their relative energy efficiency performance, as well as to benchmark values, measuring the contribution of innovative energy efficiency and renewables technologies to the Lisbon targets to make Europe more competitive and analyse and evaluate the performance of energy efficiency policies in the different EU Member States and at EU level.
The ODYSSEE MURE is a program coordinated by ADEME and supported under the Intelligent Energy Europe Programme of the European Commission.
Energy efficiency is at the heart of the EU's Europe 2020 Strategy for smart, sustainable and inclusive growth and of the transition to a resource efficient economy. According to EU Commission the EU needs to act now (2011) to get on track to achieve its target while the EU is on course to achieve only half of the 20% objective. The combined effects of full implementation of the measures will generate financial savings of up to €1000 per household annually; improve Europe's industrial competitiveness; create up to 2 million jobs; and reduce annual greenhouse gas emissions by 740 million tons. [2]
The National Energy Efficiency Action Plan plans offer an opportunity to compare the national energy efficiency measures in the European countries and review the actual national achievements compared to the targets. The first Energy Efficiency Action Plans NEEAP 2008–2010 were delivered in 2007. The second plans should cover the plans from 2011 forward.
The action plan reports state the status in 2000–2005 and give the national policies and measures to energy savings by the national governments by sectors by 2016 and 2020.
The British plan sets a target that all new buildings will be zero-carbon from 2011 in Wales and make all homes in England zero carbon by 2016. [3]
According to the German plan energy efficiency constitutes a key competitive factor, greater security of supply of the exhaustible energy sources and the most effective means, from the point of view of costs, of reducing greenhouse gas emissions. The German target by 2020 is energy productivity double compared with 1990. [4]
The "Energy efficiency in Europe" study gathers representatives, such as energy agencies, from the 28 EU Member States plus Norway and it aims at monitoring energy efficiency trends and policy measures in Europe. The energy databases are managed by Enerdata, which updates the Odyssee database twice by year. Odysse measures the energy efficiency progress by main sector (industry, transport, households) and for the whole economy (all final consumers). MURE is a database on policy measures. This project is part of the activity of the EnR Club.
The following representative partners in each European country are:
Energy efficiency in the EU-27 improved by about 13% between 1996 and 2007, corresponding to 160 Mtoe energy savings in 2007.
Energy efficiency improved by about 2.1%/year since 1990. Each branches, except textile contributed to decrease the overall industrial efficiency index. Since 1998, structural changes towards less energy-intensive branches now strengthen the influence of efficiency improvements on actual energy intensity in industry. However the impact of these structural changes is limited: they explain about 13% of the reduction in the industrial intensity since 1998. The situation is meanwhile different in countries: structural changes explain a high share of the reduction in 5 countries (Hungary, Czech Republic, Romania, Sweden, Ireland)
In households, energy efficiency improved by 1.1%/year since 1990. Space heating and large appliances experienced the greatest energy efficiency improvement: since 1990, close to 1.5%/year each. [5]
Energy efficiency improved by 0,8% /year since 1990. The specific consumption of cars in liters/100 km is regularly decreasing (-0.9%/year since 1990), with a more rapidly improvements for new cars since 1995 (-1.6%/year). However, part of this gain is offset by a shift to larger cars. For road goods transport, the energy consumption per ton-km has decreased regularly since 1993 because of a better management (increase in ton-km/veh except from 1998 to 2002)
According to Enerdata, energy efficiency indicators can be used to make several types of analysis:
The energy intensity indicator is the most often used indicator to measure the energy efficiency. It is calculated per unit of GDP for the overall indicator and transports or value added for services and agriculture or private consumption for households. However, the ODEX index [7] represents a better proxy for assessing energy efficiency trends at an aggregate level (e.g. overall economy, industry, households, transport, services) than the traditional energy intensities, as they are cleaned from structural changes and from other factors not related to energy efficiency (more appliances, more cars...). [8]
The ODEX index is used in the ODYSSEE-MURE project to measure the progress of energy efficiency by main sector (industry, transport, households) and for the whole economy (all final consumers). For each sector, the index is calculated as a weighted average of sub-sectoral indices of energy efficiency progress; sub-sectors being industrial or service sector branches or end-uses for households or transport modes.
The sub-sectoral indices are calculated from variations of unit energy consumption indicators, measured in physical units and selected so as to provide the best “proxy” of energy efficiency progress, from a policy evaluation viewpoint. The fact that indices are used enables to combine different units for a given sector, for instance for households kWh/appliance, koe/m2, tep/dwelling.
The weight used to get the weighted aggregate is the share of each sub- sector in the total energy consumption of the sub–sectors considered in the calculation.
A value of ODEX equal to 90 means a 10% energy efficiency gain.
Energy conservation is the effort to reduce wasteful energy consumption by using fewer energy services. This can be done by using energy more effectively or changing one's behavior to use less and better source of service. Energy conservation can be achieved through efficient energy use, which has some advantages, including a reduction in greenhouse gas emissions and a smaller carbon footprint, as well as cost, water, and energy savings.
Energy policies are the government's strategies and decisions regarding the production, distribution, and consumption of energy within a specific jurisdiction. Energy is essential for the functioning of modern economies because they require energy for many sectors, such as industry, transport, agriculture, housing. The main components of energy policy include legislation, international treaties, energy subsidies and other public policy techniques.
An emission intensity is the emission rate of a given pollutant relative to the intensity of a specific activity, or an industrial production process; for example grams of carbon dioxide released per megajoule of energy produced, or the ratio of greenhouse gas emissions produced to gross domestic product (GDP). Emission intensities are used to derive estimates of air pollutant or greenhouse gas emissions based on the amount of fuel combusted, the number of animals in animal husbandry, on industrial production levels, distances traveled or similar activity data. Emission intensities may also be used to compare the environmental impact of different fuels or activities. In some case the related terms emission factor and carbon intensity are used interchangeably. The jargon used can be different, for different fields/industrial sectors; normally the term "carbon" excludes other pollutants, such as particulate emissions. One commonly used figure is carbon intensity per kilowatt-hour (CIPK), which is used to compare emissions from different sources of electrical power.
Eco-Management and Audit Scheme or Environmental Management and Audit Scheme (EMAS) is an international standard for environment management systems. It was developed in March 1993 by European Commission. The goal of the standard is to enable organizations to assess, manage and continuously improve their environmental performance. The standard was designed to fit into an integrated management system. The scheme is globally applicable and open to all types of private and public organizations. In order to register with EMAS, organisations must meet the requirements of the EMAS Regulation. Currently, more than 4,600 organisations and more than 7,900 sites are EMAS registered.
Renewable energy progress in the European Union (EU) is driven by the European Commission's 2023 revision of the Renewable Energy Directive, which raises the EU's binding renewable energy target for 2030 to at least 42.5%, up from the previous target of 32%. Effective since November 20, 2023, across all EU countries, this directive aligns with broader climate objectives, including reducing greenhouse gas emissions by at least 55% by 2030 and achieving climate neutrality by 2050. Additionally, the Energy 2020 strategy exceeded its goals, with the EU achieving a 22.1% share of renewable energy in 2020, surpassing the 20% target.
In developing countries and some areas of more developed countries, energy poverty is lack of access to modern energy services in the home. In 2022, 759 million people lacked access to consistent electricity and 2.6 billion people used dangerous and inefficient cooking systems. Their well-being is negatively affected by very low consumption of energy, use of dirty or polluting fuels, and excessive time spent collecting fuel to meet basic needs.
The energy policy of the European Union focuses on energy security, sustainability, and integrating the energy markets of member states. An increasingly important part of it is climate policy. A key energy policy adopted in 2009 is the 20/20/20 objectives, binding for all EU Member States. The target involved increasing the share of renewable energy in its final energy use to 20%, reduce greenhouse gases by 20% and increase energy efficiency by 20%. After this target was met, new targets for 2030 were set at a 55% reduction of greenhouse gas emissions by 2030 as part of the European Green Deal. After the Russian invasion of Ukraine, the EU's energy policy turned more towards energy security in their REPowerEU policy package, which boosts both renewable deployment and fossil fuel infrastructure for alternative suppliers.
Efficient energy use, or energy efficiency, is the process of reducing the amount of energy required to provide products and services. There are many technologies and methods available that are more energy efficient than conventional systems. For example, insulating a building allows it to use less heating and cooling energy while still maintaining a comfortable temperature. Another method is to remove energy subsidies that promote high energy consumption and inefficient energy use. Improved energy efficiency in buildings, industrial processes and transportation could reduce the world's energy needs in 2050 by one third.
Renewable energy in Spain, comprising bioenergy, wind, solar, and hydro sources, accounted for 15.0% of the Total Energy Supply (TES) in 2019. Oil was the largest contributor at 42.4% of the TES, followed by gas, which made up 25.4%.
Energy in Germany is obtained primarily from fossil fuels, accounting for 77.6% of total energy consumption in 2023, followed by renewables at 19.6%, and 0.7% nuclear power. On 15 April 2023, the three remaining German nuclear reactors were taken offline, completing the country's nuclear phase-out plan. As of 2023, German primary energy consumption amounted to 10,791 Petajoule, making it the ninth largest global primary energy consumer. Total consumption has been steadily declining from its peak of 14,845 Petajoule in 2006. In 2023 Germany's gross electricity production reached 508.1 TWh, down from 569.2 TWh in 2022 and 631.4 TWh in 2013.
Prospective Outlook on Long-term Energy Systems (POLES) is a world simulation model for the energy sector that runs on the Vensim software. It is a techno-economic model with endogenous projection of energy prices, a complete accounting of energy demand and supply of numerous energy vectors and associated technologies, and a carbon dioxide and other greenhouse gases emissions module.
A National Renewable Energy Action Plan (NREAP) is a detailed report submitted by countries outlining commitments and initiatives to develop renewable energy that all member states of the European Union were obliged to notify to the European Commission by 30 June 2010. The plan provides a detailed road map of how the member state expects to reach its legally binding 2020 target for the share of renewable energy in their total energy consumption, as required by article 4 of the Renewable Energy Directive 2009/28/EC. In the plan, the member state sets out sectoral targets, the technology mix they expect to use, the trajectory they will follow, and the measures and reforms they will undertake to overcome the barriers to developing renewable energy.
Sustainable products are products either sustainably sourced, manufactured or processed and provide environmental, social, and economic benefits while protecting public health and the environment throughout their whole life cycle, from the extraction of raw materials to the final disposal.
Renewable energy has developed rapidly in Italy over the past decade and provided the country a means of diversifying from its historical dependency on imported fuels. Solar power accounted for around 8% of the total electric production in the country in 2014, making Italy the country with the highest contribution from solar energy in the world that year. Rapid growth in the deployment of solar, wind and bio energy in recent years lead to Italy producing over 40% of its electricity from renewable sources in 2014.
EurObserv'ER is a consortium dedicated to the monitoring of the development of the various sectors of renewable energies in the European Union.
Energy efficiency in agriculture refers to reducing the amount of energy required to provide agricultural products and services. The European Commission has policies related to energy efficiency, including in agriculture. The European Union has established measures to promote energy efficiency, including setting targets for energy savings, and requiring energy audits and management plans for large companies. The AGREE project conducted studies on energy efficiency in different agricultural production systems and proposed measures for improvement. The results of the project were summarized in reports that highlighted the opportunities and drawbacks for energy efficiency in agriculture in different European countries. Improving energy efficiency in agriculture contributes to reducing greenhouse gas emissions.
Uzbekistan had a total primary energy supply (TPES) of 48.28 Mtoe in 2012. Electricity consumption was 47.80 TWh. The majority of primary energy came from fossil fuels, with natural gas, coal and oil the main sources. Hydroelectricity, the only significant renewable source in the country, accounted for about 2% of the primary energy supply. Natural gas is the source for 73.8% of electricity production, followed by hydroelectricity with 21.4%.
The German National Action Plan on Energy Efficiency (NAPE) is the National Energy Efficiency Action Plan (NEEAP) for Germany. The plan was commissioned under EU Energy Efficiency Directive 2012/27/EU of the European Union and released on 3 December 2014. Under the plan, the German government offers an average increase of 2.1%/year in macroeconomic energy productivity from 2008 to 2020. The exact reduction in primary energy use is therefore dependent on the rate of economic growth. The NAPE is part of the Climate Action Programme 2020, also approved on 3 December 2014.
The Energy Efficiency Directive 2012/27/EU is a European Union directive which mandates energy efficiency improvements within the European Union. It was approved on 25 October 2012 and entered into force on 4 December 2012. The directive introduces legally binding measures to encourage efforts to use energy more efficiently in all stages and sectors of the supply chain. It establishes a common framework for the promotion of energy efficiency within the EU in order to meet its energy efficiency headline target of 20% by 2020. It also paves the way for further improvements thereafter.
By the end of 2016 Austria already fulfilled their EU Renewables Directive goal for the year 2020. By 2016 renewable energies accounted for 33.5% of the final energy consumption in all sectors. The renewable energy sector is also accountable for hosting 41,591 jobs and creating a revenue of 7,219 million euros in 2016.