Entropy of entanglement

Last updated

The entropy of entanglement (or entanglement entropy) is a measure of the degree of quantum entanglement between two subsystems constituting a two-part composite quantum system. Given a pure bipartite quantum state of the composite system, it is possible to obtain a reduced density matrix describing knowledge of the state of a subsystem. The entropy of entanglement is the Von Neumann entropy of the reduced density matrix for any of the subsystems. If it is non-zero, it indicates the two subsystems are entangled.

Contents

More mathematically; if a state describing two subsystems A and B is a separable state, then the reduced density matrix is a pure state. Thus, the entropy of the state is zero. Similarly, the density matrix of B would also have 0 entropy. A reduced density matrix having a non-zero entropy is therefore a signal of the existence of entanglement in the system.

Bipartite entanglement entropy

Suppose that a quantum system consists of particles. A bipartition of the system is a partition which divides the system into two parts and , containing and particles respectively with . Bipartite entanglement entropy is defined with respect to this bipartition.

Von Neumann entanglement entropy

The bipartite von Neumann entanglement entropy is defined as the von Neumann entropy of either of its reduced states, since they are of the same value (can be proved from Schmidt decomposition of the state with respect to the bipartition); the result is independent of which one we pick. That is, for a pure state , it is given by:

where and are the reduced density matrices for each partition.

The entanglement entropy can be expressed using the singular values of the Schmidt decomposition of the state. Any pure state can be written as where and are orthonormal states in subsystem and subsystem respectively. The entropy of entanglement is simply:

This form of writing the entropy makes it explicitly clear that the entanglement entropy is the same regardless of whether one computes partial trace over the or subsystem.


Many entanglement measures reduce to the entropy of entanglement when evaluated on pure states. Among those are:

Some entanglement measures that do not reduce to the entropy of entanglement are:

Renyi entanglement entropies

The Renyi entanglement entropies are also defined in terms of the reduced density matrices, and a Renyi index . It is defined as the Rényi entropy of the reduced density matrices:

Note that in the limit , The Renyi entanglement entropy approaches the Von Neumann entanglement entropy.

Example with coupled harmonic oscillators

Consider two coupled quantum harmonic oscillators, with positions and , momenta and , and system Hamiltonian

With , the system's pure ground state density matrix is , which in position basis is . Then [2]

Since happens to be precisely equal to the density matrix of a single quantum harmonic oscillator of frequency at thermal equilibrium with temperature ( such that where is the Boltzmann constant), the eigenvalues of are for nonnegative integers . The Von Neumann Entropy is thus

.

Similarly the Renyi entropy .

Area law of bipartite entanglement entropy

A quantum state satisfies an area law if the leading term of the entanglement entropy grows at most proportionally with the boundary between the two partitions. Area laws are remarkably common for ground states of local gapped quantum many-body systems. This has important applications, one such application being that it greatly reduces the complexity of quantum many-body systems. The density matrix renormalization group and matrix product states, for example, implicitly rely on such area laws. [3]

References/sources

  1. Anonymous (2015-10-23). "Entropy of entanglement". Quantiki. Retrieved 2019-10-17.
  2. Entropy and area Mark Srednicki Phys. Rev. Lett. 71, 666 – Published 2 August 1993 arXiv : hep-th/9303048
  3. Eisert, J.; Cramer, M.; Plenio, M. B. (February 2010). "Colloquium: Area laws for the entanglement entropy". Reviews of Modern Physics. 82 (1): 277–306. arXiv: 0808.3773 . Bibcode:2010RvMP...82..277E. doi:10.1103/RevModPhys.82.277.

Related Research Articles

In quantum mechanics, a density matrix is a matrix that describes an ensemble of physical systems as quantum states. It allows for the calculation of the probabilities of the outcomes of any measurements performed upon the systems of the ensemble using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed ensembles. Mixed ensembles arise in quantum mechanics in two different situations:

  1. when the preparation of the systems lead to numerous pure states in the ensemble, and thus one must deal with the statistics of possible preparations, and
  2. when one wants to describe a physical system that is entangled with another, without describing their combined state; this case is typical for a system interacting with some environment. In this case, the density matrix of an entangled system differs from that of an ensemble of pure states that, combined, would give the same statistical results upon measurement.
<span class="mw-page-title-main">Partition function (statistical mechanics)</span> Function in thermodynamics and statistical physics

In physics, a partition function describes the statistical properties of a system in thermodynamic equilibrium. Partition functions are functions of the thermodynamic state variables, such as the temperature and volume. Most of the aggregate thermodynamic variables of the system, such as the total energy, free energy, entropy, and pressure, can be expressed in terms of the partition function or its derivatives. The partition function is dimensionless.

The joint quantum entropy generalizes the classical joint entropy to the context of quantum information theory. Intuitively, given two quantum states and , represented as density operators that are subparts of a quantum system, the joint quantum entropy is a measure of the total uncertainty or entropy of the joint system. It is written or , depending on the notation being used for the von Neumann entropy. Like other entropies, the joint quantum entropy is measured in bits, i.e. the logarithm is taken in base 2.

The Peres–Horodecki criterion is a necessary condition, for the joint density matrix of two quantum mechanical systems and , to be separable. It is also called the PPT criterion, for positive partial transpose. In the 2×2 and 2×3 dimensional cases the condition is also sufficient. It is used to decide the separability of mixed states, where the Schmidt decomposition does not apply. The theorem was discovered in 1996 by Asher Peres and the Horodecki family

In physics, the von Neumann entropy, named after John von Neumann, is an extension of the concept of Gibbs entropy from classical statistical mechanics to quantum statistical mechanics. For a quantum-mechanical system described by a density matrix ρ, the von Neumann entropy is

In quantum mechanics, separable states are multipartite quantum states that can be written as a convex combination of product states. Product states are multipartite quantum states that can be written as a tensor product of states in each space. The physical intuition behind these definitions is that product states have no correlation between the different degrees of freedom, while separable states might have correlations, but all such correlations can be explained as due to a classical random variable, as opposed as being due to entanglement.

<span class="mw-page-title-main">LOCC</span> Method in quantum computation and communication

LOCC, or local operations and classical communication, is a method in quantum information theory where a local (product) operation is performed on part of the system, and where the result of that operation is "communicated" classically to another part where usually another local operation is performed conditioned on the information received.

A quasiprobability distribution is a mathematical object similar to a probability distribution but which relaxes some of Kolmogorov's axioms of probability theory. Quasiprobabilities share several of general features with ordinary probabilities, such as, crucially, the ability to yield expectation values with respect to the weights of the distribution. However, they can violate the σ-additivity axiom: integrating over them does not necessarily yield probabilities of mutually exclusive states. Indeed, quasiprobability distributions also have regions of negative probability density, counterintuitively, contradicting the first axiom. Quasiprobability distributions arise naturally in the study of quantum mechanics when treated in phase space formulation, commonly used in quantum optics, time-frequency analysis, and elsewhere.

In linear algebra, the Schmidt decomposition refers to a particular way of expressing a vector in the tensor product of two inner product spaces. It has numerous applications in quantum information theory, for example in entanglement characterization and in state purification, and plasticity.

In quantum mechanics, notably in quantum information theory, fidelity quantifies the "closeness" between two density matrices. It expresses the probability that one state will pass a test to identify as the other. It is not a metric on the space of density matrices, but it can be used to define the Bures metric on this space.

The Glauber–Sudarshan P representation is a suggested way of writing down the phase space distribution of a quantum system in the phase space formulation of quantum mechanics. The P representation is the quasiprobability distribution in which observables are expressed in normal order. In quantum optics, this representation, formally equivalent to several other representations, is sometimes preferred over such alternative representations to describe light in optical phase space, because typical optical observables, such as the particle number operator, are naturally expressed in normal order. It is named after George Sudarshan and Roy J. Glauber, who worked on the topic in 1963. Despite many useful applications in laser theory and coherence theory, the Sudarshan–Glauber P representation has the peculiarity that it is not always positive, and is not a bona-fide probability function.

The time-evolving block decimation (TEBD) algorithm is a numerical scheme used to simulate one-dimensional quantum many-body systems, characterized by at most nearest-neighbour interactions. It is dubbed Time-evolving Block Decimation because it dynamically identifies the relevant low-dimensional Hilbert subspaces of an exponentially larger original Hilbert space. The algorithm, based on the Matrix Product States formalism, is highly efficient when the amount of entanglement in the system is limited, a requirement fulfilled by a large class of quantum many-body systems in one dimension.

In quantum information theory, quantum relative entropy is a measure of distinguishability between two quantum states. It is the quantum mechanical analog of relative entropy.

In quantum information theory, quantum mutual information, or von Neumann mutual information, after John von Neumann, is a measure of correlation between subsystems of quantum state. It is the quantum mechanical analog of Shannon mutual information.

In the case of systems composed of subsystems, the classification of quantum-entangledstates is richer than in the bipartite case. Indeed, in multipartite entanglement apart from fully separable states and fully entangled states, there also exists the notion of partially separable states.

In quantum mechanics, and especially quantum information theory, the purity of a normalized quantum state is a scalar defined as where is the density matrix of the state and is the trace operation. The purity defines a measure on quantum states, giving information on how much a state is mixed.

This is a glossary for the terminology often encountered in undergraduate quantum mechanics courses.

The min-entropy, in information theory, is the smallest of the Rényi family of entropies, corresponding to the most conservative way of measuring the unpredictability of a set of outcomes, as the negative logarithm of the probability of the most likely outcome. The various Rényi entropies are all equal for a uniform distribution, but measure the unpredictability of a nonuniform distribution in different ways. The min-entropy is never greater than the ordinary or Shannon entropy and that in turn is never greater than the Hartley or max-entropy, defined as the logarithm of the number of outcomes with nonzero probability.

Generalized relative entropy is a measure of dissimilarity between two quantum states. It is a "one-shot" analogue of quantum relative entropy and shares many properties of the latter quantity.

The entanglement of formation is a quantity that measures the entanglement of a bipartite quantum state.