Schmidt decomposition

Last updated

In linear algebra, the Schmidt decomposition (named after its originator Erhard Schmidt) refers to a particular way of expressing a vector in the tensor product of two inner product spaces. It has numerous applications in quantum information theory, for example in entanglement characterization and in state purification, and plasticity.

Contents

Theorem

Let and be Hilbert spaces of dimensions n and m respectively. Assume . For any vector in the tensor product , there exist orthonormal sets and such that , where the scalars are real, non-negative, and unique up to re-ordering.

Proof

The Schmidt decomposition is essentially a restatement of the singular value decomposition in a different context. Fix orthonormal bases and . We can identify an elementary tensor with the matrix , where is the transpose of . A general element of the tensor product

can then be viewed as the n × m matrix

By the singular value decomposition, there exist an n × n unitary U, m × m unitary V, and a positive semidefinite diagonal m × m matrix Σ such that

Write where is n × m and we have

Let be the m column vectors of , the column vectors of , and the diagonal elements of Σ. The previous expression is then

Then

which proves the claim.

Some observations

Some properties of the Schmidt decomposition are of physical interest.

Spectrum of reduced states

Consider a vector of the tensor product

in the form of Schmidt decomposition

Form the rank 1 matrix . Then the partial trace of , with respect to either system A or B, is a diagonal matrix whose non-zero diagonal elements are . In other words, the Schmidt decomposition shows that the reduced states of on either subsystem have the same spectrum.

Schmidt rank and entanglement

The strictly positive values in the Schmidt decomposition of are its Schmidt coefficients, or Schmidt numbers. The total number of Schmidt coefficients of , counted with multiplicity, is called its Schmidt rank.

If can be expressed as a product

then is called a separable state. Otherwise, is said to be an entangled state. From the Schmidt decomposition, we can see that is entangled if and only if has Schmidt rank strictly greater than 1. Therefore, two subsystems that partition a pure state are entangled if and only if their reduced states are mixed states.

Von Neumann entropy

A consequence of the above comments is that, for pure states, the von Neumann entropy of the reduced states is a well-defined measure of entanglement. For the von Neumann entropy of both reduced states of is , and this is zero if and only if is a product state (not entangled).

Schmidt-rank vector

The Schmidt rank is defined for bipartite systems, namely quantum states

The concept of Schmidt rank can be extended to quantum systems made up of more than two subsystems. [1]

Consider the tripartite quantum system:

There are three ways to reduce this to a bipartite system by performing the partial trace with respect to or

Each of the systems obtained is a bipartite system and therefore can be characterized by one number (its Schmidt rank), respectively and . These numbers capture the "amount of entanglement" in the bipartite system when respectively A, B or C are discarded. For these reasons the tripartite system can be described by a vector, namely the Schmidt-rank vector

Multipartite systems

The concept of Schmidt-rank vector can be likewise extended to systems made up of more than three subsystems through the use of tensors.

Example [2]

Take the tripartite quantum state

This kind of system is made possible by encoding the value of a qudit into the orbital angular momentum (OAM) of a photon rather than its spin, since the latter can only take two values.

The Schmidt-rank vector for this quantum state is .

See also

Related Research Articles

In quantum mechanics, a density matrix is a matrix that describes the quantum state of a physical system. It allows for the calculation of the probabilities of the outcomes of any measurement performed upon this system, using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed states. Mixed states arise in quantum mechanics in two different situations:

  1. when the preparation of the system is not fully known, and thus one must deal with a statistical ensemble of possible preparations, and
  2. when one wants to describe a physical system which is entangled with another, without describing their combined state.
<span class="mw-page-title-main">Quantum decoherence</span> Loss of quantum coherence

Quantum decoherence is the loss of quantum coherence, the process in which a system's behaviour changes from that which can be explained by quantum mechanics to that which can be explained by classical mechanics. In quantum mechanics, particles such as electrons are described by a wave function, a mathematical representation of the quantum state of a system; a probabilistic interpretation of the wave function is used to explain various quantum effects. As long as there exists a definite phase relation between different states, the system is said to be coherent. A definite phase relationship is necessary to perform quantum computing on quantum information encoded in quantum states. Coherence is preserved under the laws of quantum physics.

<span class="mw-page-title-main">Bloch sphere</span> Geometrical representation of the pure state space of a two-level quantum mechanical system

In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.

In linear algebra and functional analysis, the partial trace is a generalization of the trace. Whereas the trace is a scalar valued function on operators, the partial trace is an operator-valued function. The partial trace has applications in quantum information and decoherence which is relevant for quantum measurement and thereby to the decoherent approaches to interpretations of quantum mechanics, including consistent histories and the relative state interpretation.

In quantum information theory, a quantum channel is a communication channel which can transmit quantum information, as well as classical information. An example of quantum information is the state of a qubit. An example of classical information is a text document transmitted over the Internet.

In quantum mechanics, separable states are quantum states belonging to a composite space that can be factored into individual states belonging to separate subspaces. A state is said to be entangled if it is not separable. In general, determining if a state is separable is not straightforward and the problem is classed as NP-hard.

In functional analysis and quantum measurement theory, a positive operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalization of projection-valued measures (PVM) and, correspondingly, quantum measurements described by POVMs are a generalization of quantum measurement described by PVMs.

In quantum mechanics, in particular quantum information, the Range criterion is a necessary condition that a state must satisfy in order to be separable. In other words, it is a separability criterion.

In quantum mechanics, notably in quantum information theory, fidelity is a measure of the "closeness" of two quantum states. It expresses the probability that one state will pass a test to identify as the other. The fidelity is not a metric on the space of density matrices, but it can be used to define the Bures metric on this space.

The time-evolving block decimation (TEBD) algorithm is a numerical scheme used to simulate one-dimensional quantum many-body systems, characterized by at most nearest-neighbour interactions. It is dubbed Time-evolving Block Decimation because it dynamically identifies the relevant low-dimensional Hilbert subspaces of an exponentially larger original Hilbert space. The algorithm, based on the Matrix Product States formalism, is highly efficient when the amount of entanglement in the system is limited, a requirement fulfilled by a large class of quantum many-body systems in one dimension.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

In the case of systems composed of subsystems, the classification of quantum-entangledstates is richer than in the bipartite case. Indeed, in multipartite entanglement apart from fully separable states and fully entangled states, there also exists the notion of partially separable states.

A decoherence-free subspace (DFS) is a subspace of a quantum system's Hilbert space that is invariant to non-unitary dynamics. Alternatively stated, they are a small section of the system Hilbert space where the system is decoupled from the environment and thus its evolution is completely unitary. DFSs can also be characterized as a special class of quantum error correcting codes. In this representation they are passive error-preventing codes since these subspaces are encoded with information that (possibly) won't require any active stabilization methods. These subspaces prevent destructive environmental interactions by isolating quantum information. As such, they are an important subject in quantum computing, where (coherent) control of quantum systems is the desired goal. Decoherence creates problems in this regard by causing loss of coherence between the quantum states of a system and therefore the decay of their interference terms, thus leading to loss of information from the (open) quantum system to the surrounding environment. Since quantum computers cannot be isolated from their environment and information can be lost, the study of DFSs is important for the implementation of quantum computers into the real world.

<span class="mw-page-title-main">SIC-POVM</span>

A symmetric, informationally complete, positive operator-valued measure (SIC-POVM) is a special case of a generalized measurement on a Hilbert space, used in the field of quantum mechanics. A measurement of the prescribed form satisfies certain defining qualities that makes it an interesting candidate for a "standard quantum measurement", utilized in the study of foundational quantum mechanics, most notably in QBism. Furthermore, it has been shown that applications exist in quantum state tomography and quantum cryptography, and a possible connection has been discovered with Hilbert's twelfth problem.

In quantum mechanics, and especially quantum information theory, the purity of a normalized quantum state is a scalar defined as

This is a glossary for the terminology often encountered in undergraduate quantum mechanics courses.

The entropy of entanglement is a measure of the degree of quantum entanglement between two subsystems constituting a two-part composite quantum system. Given a pure bipartite quantum state of the composite system, it is possible to obtain a reduced density matrix describing knowledge of the state of a subsystem. The entropy of entanglement is the Von Neumann entropy of the reduced density matrix for any of the subsystems. If it is non-zero, i.e. the subsystem is in a mixed state, it indicates the two subsystems are entangled.

In quantum information theory and quantum optics, the Schrödinger–HJW theorem is a result about the realization of a mixed state of a quantum system as an ensemble of pure quantum states and the relation between the corresponding purifications of the density operators. The theorem is named after physicists and mathematicians Erwin Schrödinger, Lane P. Hughston, Richard Jozsa and William Wootters. The result was also found independently by Nicolas Gisin, and by Nicolas Hadjisavvas building upon work by Ed Jaynes, while a significant part of it was likewise independently discovered by N. David Mermin. Thanks to its complicated history, it is also known by various other names such as the GHJW theorem, the HJW theorem, and the purification theorem.

The quantum Fisher information is a central quantity in quantum metrology and is the quantum analogue of the classical Fisher information. The quantum Fisher information of a state with respect to the observable is defined as

In quantum physics, the "monogamy" of quantum entanglement refers to the fundamental property that it cannot be freely shared between arbitrarily many parties.

References

  1. Huber, Marcus; de Vicente, Julio I. (January 14, 2013). "Structure of Multidimensional Entanglement in Multipartite Systems". Physical Review Letters. 110 (3): 030501. arXiv: 1210.6876 . Bibcode:2013PhRvL.110c0501H. doi:10.1103/PhysRevLett.110.030501. ISSN   0031-9007. PMID   23373906. S2CID   44848143.
  2. Krenn, Mario; Malik, Mehul; Fickler, Robert; Lapkiewicz, Radek; Zeilinger, Anton (March 4, 2016). "Automated Search for new Quantum Experiments". Physical Review Letters. 116 (9): 090405. arXiv: 1509.02749 . Bibcode:2016PhRvL.116i0405K. doi:10.1103/PhysRevLett.116.090405. ISSN   0031-9007. PMID   26991161. S2CID   20182586.

Further reading