Environmental stress screening

Last updated

Environmental stress screening (ESS) refers to the process of exposing a newly manufactured or repaired product or component (typically electronic) to stresses such as thermal cycling and vibration in order to force latent defects to manifest themselves by permanent or catastrophic failure during the screening process. The surviving population, upon completion of screening, can be assumed to have a higher reliability than a similar unscreened population. [1]

Contents

Overview

Developed to help electronics manufacturers detect product defects and production flaws, ESS is widely used in military and aerospace applications, less so for commercial products. The tests need not be elaborate, for example, switching an electronic or electrical system on and off a few times may be enough to catch some simple defects that would otherwise be encountered by the end user very soon after the product was first used. Tests typically include the following:

ESS can be performed as part of the manufacturing process or it can be used in new product qualification testing.

An ESS system usually consists of a test chamber, controller, fixturing, interconnect and wiring, and a functional tester. These systems can be purchased from a variety of companies in the environmental test industry.

The stress screening from this process will help find infant mortality in the product. Finding these failures before the product reaches the customer yields better quality and lower warranty expenses. Associated military terminology includes an operational requirements document (ORD) and ongoing reliability testing (ORT). [2] [3]

Standardized Definitions and Methods

The following is extracted from a paper on ESS testing prepared by the U.S. Air Force to provide standardized definitions and methods. [4]

Introduction

The purpose of this paper is to provide standardized definitions and a roadmap of test processes for the Environmental Stress Screening (ESS) of replacement and repaired components used on Air Force systems. The term “component” is used interchangeably with the term “unit” and includes Line-replaceable unit (LRU) and sub-units (SRU). A component selected for testing is a Unit Under Test (UUT). Operational Safety, Suitability, and Effectiveness (OSS&E) policy and instructions require consistency in the disciplined engineering process used to ensure that activities such as maintenance repairs and part substitutions do not degrade system or end-item baselined characteristics over their operational life. Baselined characteristics are highly dependent on reliability, which is verified and maintained by ESS testing. OSS&E policy and instructions also require consistent engineering processes to ensure manufacturing and repair entities are accountable for delivering quality products, and to provide selection and qualification criteria for new sources of supply. Determinations of product quality and source capabilities usually require ESS testing. While considerable information concerning ESS methods and procedures is available including United States Military Standards, handbooks, guides, and the original equipment manufacturer's test plans, often these publications use differing and confusing definitions for the testing phases where ESS is applied. Lengthy explanations were needed to clarify contract clauses citing these publications. This paper ensures testing requirements are uniformly applied and clearly understood in writing source qualification requirements and contracts.

Visual Inspection

Purpose

To ensure that good workmanship has been employed and that the UUT is free of obvious physical defects.

Method

Visually inspect UUT before and after each manufacturing, repair, and test operation.

  • Verify proper labeling, weight, and dimensions.
  • With the unaided eye, inspect all accessible areas of the UUT.
  • Under 10X minimum magnification, inspect all critical surfaces and interfaces of the UUT.

Pass/Fail Criteria

Workmanship shall meet the applicable standards including T.O. 00-25-234 [5] and shall be free of obvious physical defects. A unit that exhibits any sign that a part is stressed beyond its design limit (cracked circuit boards, loose connectors and/or screws, bent clamps and/or screws, worn parts, etc.) is considered to have failed even if the UUT passes the Functional Testing.

Functional Testing

Purpose

Done before, during, and after ESS testing to verify that the UUT is functioning within design tolerances.

Method

Applying an input signal or stimulus and measuring the output.

Pass/Fail Criteria

Output responses/signals must be within technical data specifications, and the UUT must operate satisfactorily in the next higher assembly.

Environmental Stress Screening (ESS)

Purpose

Testing at the physical environmental conditions (shock, vibration, temperature, altitude, humidity, etc.) that simulate those encountered over the operational life of the component. Random vibration and temperature cycling have proven to be the most successful forms of ESS in terms of effective flaw precipitation.

Method

A stress profile is developed and applied to the UUT. The profile simulates the environmental conditions encountered during transportation, storage, handling, and operational use phases. The UUT is configured to match the phase, e.g. transportation shocks are applied with the UUT in the shipping container, operational use temperature cycles are applied with the UUT operating.

Pass/Fail Criteria

The UUT (Unit Under Test) must pass Functional Testing and Visual Inspection before, during, and after ESS.

Qualification ESS

The testing of a production-representative unit to demonstrate that the design, manufacturing, assembly, and repair processes have resulted in hardware that conforms to the specification. Satisfactory completion of Qualification Testing denotes readiness for further stages of testing. Limited flight testing may be acceptable before completion of all phases of Qualification Testing.

Production Unit Qualification Testing

  • Purpose: Done for qualification of a new manufacturer, design, process, or facility to ensure the adequacy and suitability of the design to reliably operate during and after exposure to environmental stresses that exceed operational environment predictions by a prescribed margin.
  • Method: Per Mil-Std-810G for LRUs and SRUs, per Mil-Std-202G for electronic piece parts, per Mil-Std-1540 for space systems, and per Mil-Std-883H for microelectronic devices. EMI/RFI Testing is usually included in ESS Qualification Testing and requires application of MIL-STD 461E. These Military Standards require tailoring. Mil-HDBKs-340, 343, 344 and 2164 provide detailed guidance. Sequence of First Production Article testing: Visual Inspection and Functional – Preconditioning – Acceptance ESS – Acceptance Reliability – Visual Inspection & Functional – Qualification ESS – Visual Inspection & Functional –Qualification Reliability – Visual Inspection & Functional.
  • Note: Qualification Testing usually includes ‘aggravated’ ESS testing, i.e. test to actual environmental levels and duration plus a margin (typically 10 °C, 6 dB). Adding margin is required due to the statistically small sample size and uncertainties in actual environmental levels. Since this is a destructive test, the UUT shall never be fielded in operational systems.
  • Note: Must do Acceptance Testing including Pre-Conditioning first. This is because these tests are done on all production units and so become parts of the environmental stress profile.
  • Note: Another manufacturer (second-source) building the same unit or a replacement unit that is intended as a form-fit-and-function replacement for the original unit or unit sub-assembly must be qualified to specifications equivalent to those used for the original source.

Repaired Unit Qualification Testing

  • Purpose: Performed on First Repaired Article or Pre-Qualification Repaired Article units to qualify a new repair source or repair method. It is also performed to evaluate substitute piece parts.
  • Method: If the repair parts and processes are equivalent to the original manufacturing parts and processes, then use the Repaired Unit Acceptance Test performed by the contractor, followed by Government inspection and operation in the next higher assembly. If the parts and processes are not known to be equivalent, then use applicable areas of the Production Unit Qualification Testing. Sequence of PreQual Repaired Article / First Repaired Article testing: Visual Inspection & Functional – Preconditioning – Acceptance ESS – Visual Inspection & Functional – Gov't Inspection & Functional.
  • Note: Due to Diminishing Manufacturing Sources (DMS), substitutions of piece parts are often necessary. Substitute parts that appear under ambient test bench conditions to function like the original parts can exhibit unsatisfactory performance in the operational environment.
  • Qualification by Similarity. Qualification of a replacement or repaired unit by similarity to the original unit requires that the units are essentially identical. In addition, the replacement unit must have previously been qualified by testing to environmental and operational performance requirements meeting or exceeding the environmental and operational requirements of the original unit.

Acceptance ESS

Formal tests conducted to demonstrate acceptability of the individual unit for delivery. They demonstrate performance to purchase specification requirements and act as quality control screens to detect deficiencies of workmanship and materials. The successful completion of such tests denotes acceptance of the unit by the procurement agency.

Production Unit Acceptance Testing

  • Purpose: Done on 100% of new units to detect workmanship and process errors. Inspection of some microelectronic devices is destructive so lot sampling is used for acceptance testing (see paragraph 8.3.2).
  • Method: Tailored down from applicable Production Qualification Test but done to workmanship levels, no more severe than actual environmental levels and of shortened duration. Usually these tests are structured to include the Pre-Conditioning and Reliability Acceptance Testing requirements. Sequence for Components testing: Visual Inspection & Functional – Preconditioning – Acceptance ESS – Acceptance Reliability – Visual Inspection & Functional.
  • Note: Production Unit Acceptance Testing performance data is also used to evaluate "in-family" performance. While a UUT may meet all other Acceptance Test pass/fail criteria, results which deviate significantly from other units within the production lot shall require rejection of that unit.

Repaired Unit Acceptance Testing

Reliability ESS

This should be part of the Qualification and Acceptance ESS when verification of reliability is required.

Reliability Qualification Testing

  • Purpose: Done on the production qualification UUT to demonstrate life-cycle compliance with the reliability specifications per Mil-Std-781, and the original manufacturer's development specifications.
  • Method: Use Mil-Hdbk-781A. The UUT is usually tested to actual environmental levels, but margin is added if accelerated aging is required.
  • Note: Must do Acceptance Testing including Pre-Conditioning first. This is because these tests are done on all production units and so become parts of the environmental stress profile.
  • Note: The presence of redundancy in the design is not reason to eliminate reliability tests. Redundancy is used to compensate for any unknown and untested failure modes, and for damage tolerance. Redundancy only increases reliability by a small amount.

Reliability Acceptance Testing

  • Purpose: Done on all production units to find any unit with reliability degradation due to daily variations in the production process and workmanship.
  • Method: Vibration (typically 0.04 G2/Hz for 5 minutes/axis) and temperature for 3+ cycles, last one failure-free.
  • Note: Usually only done on high reliability (3-sigma) and safety of flight items.

Pre-Conditioning Testing. Also called Burn-In Testing

  • Purpose: Done on all active unit LRUs, SRUs, and piece parts (production, spare, and repair) to find ‘infant mortality’ of parts and workmanship.
  • Method: per Mil-Std-750D, Mil-Std-883E, and Mil-Std-202G.
  • Note: Most mil-spec piece parts have not been pre-conditioned by the part manufacturer.

UUT Categories

Passive Unit

  • Examples: chassis, antenna coupler, optics without moving parts, wiring harness.
  • Note: Requires Qualification ESS of the design and processes, usually in the next higher assembly. Acceptance Testing is limited to Visual Inspection and Operational Testing in the next higher assembly.

Active Unit

  • Examples: PC board with solid state devices, electric motor, cathode ray tube, pressure vessel.
  • Note: Usually requires Qualification ESS and Acceptance ESS.

One-Shot and Limited Use Devices

  • Examples: explosive, rocket propellant, gas generator, squib, battery.
  • Method: Qualification ESS is by exposure to qualification environmental levels, then operated to demonstrate capacity plus a margin. Acceptance ESS is typically done on 10% of the production lot (but not less than 10 units) by exposure to qualification environmental levels, then operated to demonstrate capacity plus a margin. Failure of one UUT requires rejection of the production lot. For explosive devices, test requirements and methods are tailored from MIL-HDBK-1512 and NATO AOP-7. For batteries, guidance on test requirements is in RCC-Doc-319-99.
  • Note: Surveillance Testing is a periodic repeat of the Acceptance Testing using trending or accelerated aging to authorize shelf life extensions. Trending involves frequent sampling and comparison to previous results to predict degradation. Accelerated aging involves stimulating known failure modes to detect degradation.

First Production Article

This is the UUT for Qualification ESS (typically three UUT are required). The UUT must be representative of the design, production line processes, materials, and workmanship.

First Repaired Article

Also called First Article. This is the UUT (typically four are required) that demonstrates that the repair source has the capability and processes to perform a satisfactory repair.

Pre-Qualification Article

  • Pre-Qualification Production Article. Also called Pre-production Article. This is the UUT used for program risk reduction and to qualify key processes, technologies, etc.
  • Pre-Qualification Repaired Article. Also called Qual Article. This is the UUT (typically two are required) repaired by a potential repair contractor to meet, in part, the criteria to be on a Qualified Bidders List.

Tailoring

Tailoring is the formal engineering task of using existing technical data (requirements, standards, specifications, test plans, etc.) and selecting or modifying applicable areas to meet the requirements unique to the type of unit undergoing test. Non-applicable requirements are deleted. Other requirements may be added due to changes in Federal standards, identification of new hazards, modifications to the item, or changes in the mission/ESS profile. All areas of non-compliance with the technical data shall be identified by the contractor and a Requirements Tailoring Request (RTR) shall be submitted to the Government for each area. The RTR shall include thorough justification. Only the Government Engineering Authority for the component can accept an RTR.

Specifications and Standards Tailoring

Tailoring generally is to select the applicable areas, best test methods, or for use of an equivalent requirement.

Test Plan Tailoring

Tailoring generally is to change the test levels and durations, sequence of tests, or reporting requirements. Tailoring shall also identify any test requirements that are to be accomplished through analysis, similarity, or inspection.

MIC, Waiver, and Deviation

Each RTR shall be classified as a MIC, Waiver, or Deviation.

Relevant standards

See also

Notes

  1. Kececioglu, D.; Sun, F.B. (2003). Environmental Stress Screening: Its Quantification, Optimization and Management. DEStech publications. ISBN   9781932078046 . Retrieved 2014-10-17.
  2. Bruce Peterson (9 March 2004). "Environmental Stress Screening Tutorial" (PDF). Accolade Engineering Solutions. Retrieved 2014-10-17.
  3. "Environmental Stress Screening". tutorialsweb.com. Retrieved 2014-10-17.
  4. The paper is available for unrestricted distribution by writing to OO-ALC/ENR, Hill AFB, Ut. 84056. Ask for OO-ALC Technical Note 01-2002, Environmental Stress Screening of Replacement and Repaired Components, Standardized Definitions and Process, by David Franz.
  5. https://www.robins.af.mil/Portals/59/documents/technicalorders/00-25-234.pdf?ver=2018-09-05-144121-517

Related Research Articles

Acceptance testing Test to determine if the requirements of a specification or contract are met

In engineering and its various subdisciplines, acceptance testing is a test conducted to determine if the requirements of a specification or contract are met. It may involve chemical tests, physical tests, or performance tests.

Configuration management Process for maintaining consistency of a product attributes with its design

Configuration management (CM) is a systems engineering process for establishing and maintaining consistency of a product's performance, functional, and physical attributes with its requirements, design, and operational information throughout its life. The CM process is widely used by military engineering organizations to manage changes throughout the system lifecycle of complex systems, such as weapon systems, military vehicles, and information systems. Outside the military, the CM process is also used with IT service management as defined by ITIL, and with other domain models in the civil engineering and other industrial engineering segments such as roads, bridges, canals, dams, and buildings.

Maintenance (technical) Operational and functional checks, repair or replacing of a product or technical system or parts thereof in order to keep their necessary technical condition

The technical meaning of maintenance involves functional checks, servicing, repairing or replacing of necessary devices, equipment, machinery, building infrastructure, and supporting utilities in industrial, business, and residential installations. Over time, this has come to include multiple wordings that describe various cost-effective practices to keep equipment operational; these activities occur either before or after a failure.

Reliability engineering is a sub-discipline of systems engineering that emphasizes the ability of equipment to function without failure. Reliability describes the ability of a system or component to function under stated conditions for a specified period of time. Reliability is closely related to availability, which is typically described as the ability of a component or system to function at a specified moment or interval of time.

A United States defense standard, often called a military standard, "MIL-STD", "MIL-SPEC", or (informally) "MilSpecs", is used to help achieve standardization objectives by the U.S. Department of Defense.

Integrated logistic support (ILS) is a technology in the system engineering to lower a product life cycle cost and decrease demand for logistics by the maintenance system optimization to ease the product support. Although originally developed for military purposes, it is also widely used in commercial customer service organisations.

A hazard analysis is used as the first step in a process used to assess risk. The result of a hazard analysis is the identification of different type of hazards. A hazard is a potential condition and exists or not. It may in single existence or in combination with other hazards and conditions become an actual Functional Failure or Accident (Mishap). The way this exactly happens in one particular sequence is called a scenario. This scenario has a probability of occurrence. Often a system has many potential failure scenarios. It also is assigned a classification, based on the worst case severity of the end condition. Risk is the combination of probability and severity. Preliminary risk levels can be provided in the hazard analysis. The validation, more precise prediction (verification) and acceptance of risk is determined in the Risk assessment (analysis). The main goal of both is to provide the best selection of means of controlling or eliminating the risk. The term is used in several engineering specialties, including avionics, chemical process safety, safety engineering, reliability engineering and food safety.

Failure mode effects and criticality analysis (FMECA) is an extension of failure mode and effects analysis (FMEA).

MIL-STD-810 Military standard

U.S. MIL-STD-810 is a United States Military Standard that emphasizes tailoring an equipment's environmental design and test limits to the conditions that it will experience throughout its service life, and establishing chamber test methods that replicate the effects of environments on the equipment rather than imitating the environments themselves. Although prepared specifically for U.S. military applications, the standard is often applied for commercial products as well.

A test engineer is a professional who determines how to create a process that would best test a particular product in manufacturing and related disciplines, in order to assure that the product meets applicable specifications. Test engineers are also responsible for determining the best way a test can be performed in order to achieve adequate test coverage. Often test engineers also serve as a liaison between manufacturing, design engineering, sales engineering and marketing communities as well.

Environmental testing is the measurement of the performance of equipment under specified environmental conditions, such as:

Verification in the field of space systems engineering covers two verification processes: Qualification and Acceptance

A highly accelerated life test (HALT) is a stress testing methodology for enhancing product reliability. HALT testing is currently in use by major manufacturing and research & development organizations to improve product reliability in a variety of industries, including electronics, computer, medical, and military.

The Institute of Environmental Sciences and Technology (IEST) is a non-profit, technical society where professionals who impact controlled environments connect, gain knowledge, receive advice, and work together to create industry best practices. The organization uniquely serves environmental test engineers, qualification engineers, cleanroom professionals, those who work in product testing and evaluation, and others who work across a variety of industries, including: acoustics, aerospace, automotive, biotechnology/bioscience, climatics, cleanroom operations/design/equipment/certification, dynamics, filtration, food processing, HVAC design, medical devices, nanotechnology, pharmaceutical, semiconductors/microelectronics, and shock/vibration. Information on ISO 14644 and ISO 14698 standards can be found through this organization.

The MIL-STD-883 standard establishes uniform methods, controls, and procedures for testing microelectronic devices suitable for use within military and aerospace electronic systems including basic environmental tests to determine resistance to deleterious effects of natural elements and conditions surrounding military and space operations; mechanical and electrical tests; workmanship and training procedures; and such other controls and constraints as have been deemed necessary to ensure a uniform level of quality and reliability suitable to the intended applications of those devices. For the purpose of this standard, the term "devices" includes such items as monolithic, multichip, film and hybrid microcircuits, microcircuit arrays, and the elements from which the circuits and arrays are formed. This standard is intended to apply only to microelectronic devices.

Reliability of semiconductor devices can be summarized as follows:

  1. Semiconductor devices are very sensitive to impurities and particles. Therefore, to manufacture these devices it is necessary to manage many processes while accurately controlling the level of impurities and particles. The finished product quality depends upon the many layered relationship of each interacting substance in the semiconductor, including metallization, chip material and package.
  2. The problems of micro-processes, and thin films and must be fully understood as they apply to metallization and wire bonding. It is also necessary to analyze surface phenomena from the aspect of thin films.
  3. Due to the rapid advances in technology, many new devices are developed using new materials and processes, and design calendar time is limited due to non-recurring engineering constraints, plus time to market concerns. Consequently, it is not possible to base new designs on the reliability of existing devices.
  4. To achieve economy of scale, semiconductor products are manufactured in high volume. Furthermore, repair of finished semiconductor products is impractical. Therefore, incorporation of reliability at the design stage and reduction of variation in the production stage have become essential.
  5. Reliability of semiconductor devices may depend on assembly, use, environmental, and cooling conditions. Stress factors affecting device reliability include gas, dust, contamination, voltage, current density, temperature, humidity, mechanical stress, vibration, shock, radiation, pressure, and intensity of magnetic and electrical fields.

In a manufacturing environment, a request for waiver (RFW) is a request for authorization to accept an item which, during manufacture or after inspection, is found to depart from specified requirements, but nevertheless is considered suitable for use as is or after repair by an approved method.

Environmental chamber

An environmental chamber, also called a climatic chamber or climate chamber, is an enclosure used to test the effects of specified environmental conditions on biological items, industrial products, materials, and electronic devices and components.

Acceptance sampling uses statistical sampling to determine whether to accept or reject a production lot of material. It has been a common quality control technique used in industry. It is usually done as products leaves the factory, or in some cases even within the factory. Most often a producer supplies a consumer a number of items and a decision to accept or reject the items is made by determining the number of defective items in a sample from the lot. The lot is accepted if the number of defects falls below where the acceptance number or otherwise the lot is rejected.

Robustness validation is a skills strategy with which the Robustness of a product to the loading conditions of a real application is proven and targeted statements about risks and reliability can be made. This strategy is particularly for use in the automotive industry however could be applied to any industry where high levels of reliability are required