Equable shape

Last updated

A two-dimensional equable shape (or perfect shape) is one whose area is numerically equal to its perimeter. [1] For example, a right angled triangle with sides 5, 12 and 13 has area and perimeter both have a unitless numerical value of 30.

Contents

Scaling and units

An area cannot be equal to a length except relative to a particular unit of measurement. For example, if shape has an area of 5 square yards and a perimeter of 5 yards, then it has an area of 45 square feet (4.2 m2) and a perimeter of 15 feet (since 3 feet = 1 yard and hence 9 square feet = 1 square yard). Moreover, contrary to what the name implies, changing the size while leaving the shape intact changes an "equable shape" into a non-equable shape. However its common use as GCSE coursework has led to its being an accepted concept. For any shape, there is a similar equable shape: if a shape S has perimeter p and area A, then scaling S by a factor of p/A leads to an equable shape. Alternatively, one may find equable shapes by setting up and solving an equation in which the area equals the perimeter. In the case of the square, for instance, this equation is

Solving this yields that x = 4, so a 4 × 4 square is equable.

Tangential polygons

A tangential polygon is a polygon in which the sides are all tangent to a common circle. Every tangential polygon may be triangulated by drawing edges from the circle's center to the polygon's vertices, forming a collection of triangles that all have height equal to the circle's radius; it follows from this decomposition that the total area of a tangential polygon equals half the perimeter times the radius. Thus, a tangential polygon is equable if and only if its inradius is two. All triangles are tangential, so in particular the equable triangles are exactly the triangles with inradius two. [2] [3]

Integer dimensions

Combining restrictions that a shape be equable and that its dimensions be integers is significantly more restrictive than either restriction on its own. For instance, there are infinitely many Pythagorean triples describing integer-sided right triangles, and there are infinitely many equable right triangles with non-integer sides; however, there are only two equable integer right triangles, with side lengths (5,12,13) and (6,8,10). [4]

More generally, the problem of finding all equable triangles with integer sides (that is, equable Heronian triangles) was considered by B. Yates in 1858. [5] [6] As W. A. Whitworth and D. Biddle proved in 1904, there are exactly three solutions, beyond the right triangles already listed, with sides (6,25,29), (7,15,20), and (9,10,17). [7] [8]

The only equable rectangles with integer sides are the 4 × 4 square and the 3 × 6 rectangle. [4] An integer rectangle is a special type of polyomino, and more generally there exist polyominoes with equal area and perimeter for any even integer area greater than or equal to 16. For smaller areas, the perimeter of a polyomino must exceed its area. [9]

Equable solids

In three dimensions, a shape is equable when its surface area is numerically equal to its volume. An example is a cube with side length six. As with equable shapes in two dimensions, an equable solid may be found by scaling any solid by an appropriate factor.

Related Research Articles

Area Size of a two-dimensional surface

Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or plane area refers to the area of a shape or planar lamina, while surface area refers to the area of an open surface or the boundary of a three-dimensional object. Area can be understood as the amount of material with a given thickness that would be necessary to fashion a model of the shape, or the amount of paint necessary to cover the surface with a single coat. It is the two-dimensional analogue of the length of a curve or the volume of a solid.

In geometry, a polygon is a plane figure that is described by a finite number of straight line segments connected to form a closed polygonal chain. The bounded plane region, the bounding circuit, or the two together, may be called a polygon.

A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference.

Triangle Shape with three sides

A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices A, B, and C is denoted .

Rectangle Quadrilateral with four right angles

In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal ; or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square. The term oblong is occasionally used to refer to a non-square rectangle. A rectangle with vertices ABCD would be denoted as  ABCD.

Polyomino Geometric shapes formed from squares

A polyomino is a plane geometric figure formed by joining one or more equal squares edge to edge. It is a polyform whose cells are squares. It may be regarded as a finite subset of the regular square tiling.

Kite (geometry) Quadrilateral symmetric across a diagonal

In Euclidean geometry, a kite is a quadrilateral whose four sides can be grouped into two pairs of equal-length sides that are adjacent to each other. In contrast, a parallelogram also has two pairs of equal-length sides, but they are opposite to each other instead of being adjacent. Kite quadrilaterals are named for the wind-blown, flying kites, which often have this shape and which are in turn named for a bird. Kites are also known as deltoids, but the word "deltoid" may also refer to a deltoid curve, an unrelated geometric object.

Equilateral triangle Shape with three equal sides

In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each other and are each 60°. It is also a regular polygon, so it is also referred to as a regular triangle.

Rhombus Quadrilateral in which all sides have the same length

In plane Euclidean geometry, a rhombus is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means that all of its sides are equal in length. The rhombus is often called a "diamond", after the diamonds suit in playing cards which resembles the projection of an octahedral diamond, or a lozenge, though the former sometimes refers specifically to a rhombus with a 60° angle, and the latter sometimes refers specifically to a rhombus with a 45° angle.

Isosceles triangle Triangle with at least two sides congruent

In geometry, an isosceles triangle is a triangle that has two sides of equal length. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case. Examples of isosceles triangles include the isosceles right triangle, the golden triangle, and the faces of bipyramids and certain Catalan solids.

Reuleaux triangle Curved triangle with constant width

A Reuleaux triangle[ʁœlo] is a curved triangle with constant width, the simplest and best known curve of constant width other than the circle. It is formed from the intersection of three circular disks, each having its center on the boundary of the other two. Constant width means that the separation of every two parallel supporting lines is the same, independent of their orientation. Because all its diameters are the same, the Reuleaux triangle is one answer to the question "Other than a circle, what shape can a manhole cover be made so that it cannot fall down through the hole?"

Square Regular quadrilateral

In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles. It can also be defined as a rectangle with two equal-length adjacent sides. It is the only regular polygon whose internal angle, central angle, and external angle are all equal (90°), and whose diagonals are all equal in length. A square with vertices ABCD would be denoted ABCD.

In geometry, a Heronian triangle is a triangle that has side lengths and area that are all integers. Heronian triangles are named after Hero of Alexandria. The term is sometimes applied more widely to triangles whose sides and area are all rational numbers, since one can rescale the sides by a common multiple to obtain a triangle whose sides and area are integers.

In geometry, the semiperimeter of a polygon is half its perimeter. Although it has such a simple derivation from the perimeter, the semiperimeter appears frequently enough in formulas for triangles and other figures that it is given a separate name. When the semiperimeter occurs as part of a formula, it is typically denoted by the letter s.

Elementary mathematics

Elementary mathematics consists of mathematics topics frequently taught at the primary or secondary school levels.

Inscribed figure Geometric figure which is "snugly enclosed" by another figure

In geometry, an inscribed planar shape or solid is one that is enclosed by and "fits snugly" inside another geometric shape or solid. To say that "figure F is inscribed in figure G" means precisely the same thing as "figure G is circumscribed about figure F". A circle or ellipse inscribed in a convex polygon is tangent to every side or face of the outer figure. A polygon inscribed in a circle, ellipse, or polygon has each vertex on the outer figure; if the outer figure is a polygon or polyhedron, there must be a vertex of the inscribed polygon or polyhedron on each side of the outer figure. An inscribed figure is not necessarily unique in orientation; this can easily be seen, for example, when the given outer figure is a circle, in which case a rotation of an inscribed figure gives another inscribed figure that is congruent to the original one.

Tangential quadrilateral Polygon whose four sides all touch a circle

In Euclidean geometry, a tangential quadrilateral or circumscribed quadrilateral is a convex quadrilateral whose sides all can be tangent to a single circle within the quadrilateral. This circle is called the incircle of the quadrilateral or its inscribed circle, its center is the incenter and its radius is called the inradius. Since these quadrilaterals can be drawn surrounding or circumscribing their incircles, they have also been called circumscribable quadrilaterals, circumscribing quadrilaterals, and circumscriptible quadrilaterals. Tangential quadrilaterals are a special case of tangential polygons.

Tangential trapezoid

In Euclidean geometry, a tangential trapezoid, also called a circumscribed trapezoid, is a trapezoid whose four sides are all tangent to a circle within the trapezoid: the incircle or inscribed circle. It is the special case of a tangential quadrilateral in which at least one pair of opposite sides are parallel. As for other trapezoids, the parallel sides are called the bases and the other two sides the legs. The legs can be equal, but they don't have to be.

Tangential polygon Convex polygon that contains an inscribed circle

In Euclidean geometry, a tangential polygon, also known as a circumscribed polygon, is a convex polygon that contains an inscribed circle. This is a circle that is tangent to each of the polygon's sides. The dual polygon of a tangential polygon is a cyclic polygon, which has a circumscribed circle passing through each of its vertices.

Circumgon Geometric figure which circumscribes a circle

In mathematics and particularly in elementary geometry, a circumgon is a geometric figure which circumscribes some circle, in the sense that it is the union of the outer edges of non-overlapping triangles each of which has a vertex at the center of the circle and opposite side on a line that is tangent to the circle. The limiting case in which part or all of the circumgon is a circular arc is permitted. A circumgonal region is the union of those triangular regions.

References

  1. Bradley, Christopher J. (2005). Challenges in Geometry: For Mathematical Olympians Past and Present. Oxford University Press. p. 15. ISBN   0-19-856692-1.
  2. Kilmer, Jean E. (1988), "Triangles of Equal Area and Perimeter and Inscribed Circles", The Mathematics Teacher, 81 (1): 65–70, doi:10.5951/MT.81.1.0065, JSTOR   27965678
  3. Wilson, Jim, Perfect triangles, University of Georgia, archived from the original on 2012-05-02. See also Wilson's list of solutions
  4. 1 2 Konhauser, Joseph D. E.; Velleman, Dan; Wagon, Stan (1997), "95. When does the perimeter equal the area?", Which Way Did the Bicycle Go?: And Other Intriguing Mathematical Mysteries, Dolciani Mathematical Expositions, vol. 18, Cambridge University Press, p. 29, ISBN   9780883853252
  5. Yates, B. (1858), "Quest 2019", The Lady's and Gentleman's Diary : 83
  6. Dickson, Leonard Eugene (2005), History of the Theory of Numbers, Volume Il: Diophantine Analysis, Courier Dover Publications, p. 195, ISBN   9780486442334
  7. Dickson (2005), p. 199
  8. Markowitz, L. (1981), "Area = Perimeter", The Mathematics Teacher, 74 (3): 222–223, doi:10.5951/MT.74.3.0222
  9. Picciotto, Henri (1999), Geometry Labs, MathEducationPage.org, p. 208