In geometry, a Heronian triangle (or Heron triangle) is a triangle whose side lengths a, b, and c and area A are all positive integers. [1] [2] Heronian triangles are named after Heron of Alexandria, based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84. [3]
Heron's formula implies that the Heronian triangles are exactly the positive integer solutions of the Diophantine equation
that is, the side lengths and area of any Heronian triangle satisfy the equation, and any positive integer solution of the equation describes a Heronian triangle. [4]
If the three side lengths are setwise coprime (meaning that the greatest common divisor of all three sides is 1), the Heronian triangle is called primitive.
Triangles whose side lengths and areas are all rational numbers (positive rational solutions of the above equation) are sometimes also called Heronian triangles or rational triangles; [5] in this article, these more general triangles will be called rational Heronian triangles. Every (integral) Heronian triangle is a rational Heronian triangle. Conversely, every rational Heronian triangle is similar to exactly one primitive Heronian triangle.
In any rational Heronian triangle, the three altitudes, the circumradius, the inradius and exradii, and the sines and cosines of the three angles are also all rational numbers.
Scaling a triangle with a factor of s consists of multiplying its side lengths by s; this multiplies the area by and produces a similar triangle. Scaling a rational Heronian triangle by a rational factor produces another rational Heronian triangle.
Given a rational Heronian triangle of side lengths the scale factor produce a rational Heronian triangle such that its side lengths are setwise coprime integers. It is proved below that the area A is an integer, and thus the triangle is a Heronian triangle. Such a triangle is often called a primitive Heronian triangle.
In summary, every similarity class of rational Heronian triangles contains exactly one primitive Heronian triangle. A byproduct of the proof is that exactly one of the side lengths of a primitive Heronian triangle is an even integer.
Proof: One has to prove that, if the side lengths of a rational Heronian triangle are coprime integers, then the area A is also an integer and exactly one of the side lengths is even.
The Diophantine equation given in the introduction shows immediately that is an integer. Its square root is also an integer, since the square root of an integer is either an integer or an irrational number.
If exactly one of the side lengths is even, all the factors in the right-hand side of the equation are even, and, by dividing the equation by 16, one gets that and are integers.
As the side lengths are supposed to be coprime, one is left with the case where one or three side lengths are odd. Supposing that c is odd, the right-hand side of the Diophantine equation can be rewritten
with and even. As the square of an odd integer is congruent to modulo 4, the right-hand side of the equation must be congruent to modulo 4. It is thus impossible, that one has a solution of the Diophantine equation, since must be the square of an integer, and the square of an integer is congruent to 0 or 1 modulo 4.
Any Pythagorean triangle is a Heronian triangle. The side lengths of such a triangle are integers, by definition. In any such triangle, one of the two shorter sides has even length, so the area (the product of these two sides, divided by two) is also an integer.
Examples of Heronian triangles that are not right-angled are the isosceles triangle obtained by joining a Pythagorean triangle and its mirror image along a side of the right angle. Starting with the Pythagorean triple 3, 4, 5 this gives two Heronian triangles with side lengths (5, 5, 6) and (5, 5, 8) and area 12.
More generally, given two Pythagorean triples and with largest entries c and e, one can join the corresponding triangles along the sides of length a (see the figure) for getting a Heronian triangle with side lengths and area (this is an integer, since the area of a Pythagorean triangle is an integer).
There are Heronian triangles that cannot be obtained by joining Pythagorean triangles. For example, the Heronian triangle of side lengths and area 72, since none of its altitudes is an integer. Such Heronian triangles are known as indecomposable. [6] However, every Heronian triangle can be constructed from right triangles with rational side lengths, and is thus similar to a decomposable Heronian triangle. In fact, at least one of the altitudes of a triangle is inside the triangle, and divides it into two right triangles. These triangles have rational sides, since the cosine and the sine of the angles of a Heronian triangle are rational numbers, and, with notation of the figure, one has and where is the left-most angle of the triangle.
Many quantities related to a Heronian triangle are rational numbers. In particular:
Here are some properties of side lengths of Heronian triangles, whose side lengths are a, b, c and area is A.
A parametric equation or parametrization of Heronian triangles consists of an expression of the side lengths and area of a triangle as functions—typically polynomial functions –of some parameters, such that the triangle is Heronian if and only if the parameters satisfy some constraints—typically, to be positive integers satisfying some inequalities. It is also generally required that all Heronian triangles can be obtained up to a scaling for some values of the parameters, and that these values are unique, if an order on the sides of the triangle is specified.
The first such parametrization was discovered by Brahmagupta (598-668 A.D.), who did not prove that all Heronian triangles can be generated by the parametrization. In the 18th century, Leonard Euler provided another parametrization and proved that it generates all Heronian triangles. These parametrizations are described in the next two subsections.
In the third subsection, a rational parametrization—that is a parametrization where the parameters are positive rational numbers —is naturally derived from properties of Heronian triangles. Both Brahmagupta's and Euler's parametrizations can be recovered from this rational parametrization by clearing denominators. This provides a proof that Brahmagupta's and Euler's parametrizations generate all Heronian triangles.
The Indian mathematician Brahmagupta (598-668 A.D.) discovered the following parametric equations for generating Heronian triangles, [20] but did not prove that every similarity class of Heronian triangles can be obtained this way.[ citation needed ]
For three positive integers m, n and k that are setwise coprime () and satisfy (to guarantee positive side lengths) and (for uniqueness):
where s is the semiperimeter, A is the area, and r is the inradius.
The resulting Heronian triangle is not always primitive, and a scaling may be needed for getting the corresponding primitive triangle. For example, taking m = 36, n = 4 and k = 3 produces a triangle with a = 5220, b = 900 and c = 5400, which is similar to the (5, 29, 30) Heronian triangle with a proportionality factor of 180.
The fact that the generated triangle is not primitive is an obstacle for using this parametrization for generating all Heronian triangles with size lengths less than a given bound (since the size of cannot be predicted. [20]
The following method of generating all Heronian triangles was discovered by Leonard Euler, [21] who was the first to provably parametrize all such triangles.
For four positive integers m coprime to n and p coprime to q() satisfying (to guarantee positive side lengths):
where s is the semiperimeter, A is the area, and r is the inradius.
Even when m, n, p, and q are pairwise coprime, the resulting Heronian triangle may not be primitive. In particular, if m, n, p, and q are all odd, the three side lengths are even. It is also possible that a, b, and c have a common divisor other than 2. For example, with m = 2, n = 1, p = 7, and q = 4, one gets (a, b, c) = (130, 140, 150), where each side length is a multiple of 10; the corresponding primitive triple is (13, 14, 15), which can also be obtained by dividing the triple resulting from m = 2, n = 1, p = 3, q = 2 by two, then exchanging b and c.
Let be the side lengths of a triangle, let be the interior angles opposite these sides, and let and be the half-angle tangents. The values are all positive and satisfy ; this "triple tangent identity" is the half-angle tangent version of the fundamental triangle identity written as radians (that is, 90°), as can be proved using the addition formula for tangents. By the laws of sines and cosines, all of the sines and the cosines of are rational numbers if the triangle is a rational Heronian triangle and, because a half-angle tangent is a rational function of the sine and cosine, it follows that the half-angle tangents are also rational.
Conversely, if are positive rational numbers such that it can be seen that they are the half-angle tangents of the interior angles of a class of similar Heronian triangles. [22] The condition can be rearranged to and the restriction requires Thus there is a bijection between the similarity classes of rational Heronian triangles and the pairs of positive rational numbers whose product is less than 1.
To make this bijection explicit, one can choose, as a specific member of the similarity class, the triangle inscribed in a unit-diameter circle with side lengths equal to the sines of the opposite angles: [23]
where is the semiperimeter, is the area, is the inradius, and all these values are rational because and are rational.
To obtain an (integral) Heronian triangle, the denominators of a, b, and c must be cleared. There are several ways to do this. If and with (irreducible fractions), and the triangle is scaled up by the result is Euler's parametrization. If and with (lowest common denomimator), and the triangle is scaled up by the result is similar but not quite identical to Brahmagupta's parametrization. If, instead, this is and that are reduced to the lowest common denominator, that is, if and with then one gets exactly Brahmagupta's parametrization by scaling up the triangle by
This proves that either parametrization generates all Heronian triangles.
Kurz (2008) has derived fast algorithms for generating Heronian triangles.
There are infinitely many primitive and indecomposable non-Pythagorean Heronian triangles with integer values for the inradius and all three of the exradii , including the ones generated by [24] : Thm. 4
There are infinitely many Heronian triangles that can be placed on a lattice such that not only are the vertices at lattice points, as holds for all Heronian triangles, but additionally the centers of the incircle and excircles are at lattice points. [24] : Thm. 5
See also Integer triangle § Heronian triangles for parametrizations of some types of Heronian triangles.
The list of primitive integer Heronian triangles, sorted by area and, if this is the same, by perimeter, starts as in the following table. "Primitive" means that the greatest common divisor of the three side lengths equals 1.
Area | Perimeter | side length b+d | side length e | side length c |
---|---|---|---|---|
6 | 12 | 5 | 4 | 3 |
12 | 16 | 6 | 5 | 5 |
12 | 18 | 8 | 5 | 5 |
24 | 32 | 15 | 13 | 4 |
30 | 30 | 13 | 12 | 5 |
36 | 36 | 17 | 10 | 9 |
36 | 54 | 26 | 25 | 3 |
42 | 42 | 20 | 15 | 7 |
60 | 36 | 13 | 13 | 10 |
60 | 40 | 17 | 15 | 8 |
60 | 50 | 24 | 13 | 13 |
60 | 60 | 29 | 25 | 6 |
66 | 44 | 20 | 13 | 11 |
72 | 64 | 30 | 29 | 5 |
84 | 42 | 15 | 14 | 13 |
84 | 48 | 21 | 17 | 10 |
84 | 56 | 25 | 24 | 7 |
84 | 72 | 35 | 29 | 8 |
90 | 54 | 25 | 17 | 12 |
90 | 108 | 53 | 51 | 4 |
114 | 76 | 37 | 20 | 19 |
120 | 50 | 17 | 17 | 16 |
120 | 64 | 30 | 17 | 17 |
120 | 80 | 39 | 25 | 16 |
126 | 54 | 21 | 20 | 13 |
126 | 84 | 41 | 28 | 15 |
126 | 108 | 52 | 51 | 5 |
132 | 66 | 30 | 25 | 11 |
156 | 78 | 37 | 26 | 15 |
156 | 104 | 51 | 40 | 13 |
168 | 64 | 25 | 25 | 14 |
168 | 84 | 39 | 35 | 10 |
168 | 98 | 48 | 25 | 25 |
180 | 80 | 37 | 30 | 13 |
180 | 90 | 41 | 40 | 9 |
198 | 132 | 65 | 55 | 12 |
204 | 68 | 26 | 25 | 17 |
210 | 70 | 29 | 21 | 20 |
210 | 70 | 28 | 25 | 17 |
210 | 84 | 39 | 28 | 17 |
210 | 84 | 37 | 35 | 12 |
210 | 140 | 68 | 65 | 7 |
210 | 300 | 149 | 148 | 3 |
216 | 162 | 80 | 73 | 9 |
234 | 108 | 52 | 41 | 15 |
240 | 90 | 40 | 37 | 13 |
252 | 84 | 35 | 34 | 15 |
252 | 98 | 45 | 40 | 13 |
252 | 144 | 70 | 65 | 9 |
264 | 96 | 44 | 37 | 15 |
264 | 132 | 65 | 34 | 33 |
270 | 108 | 52 | 29 | 27 |
288 | 162 | 80 | 65 | 17 |
300 | 150 | 74 | 51 | 25 |
300 | 250 | 123 | 122 | 5 |
306 | 108 | 51 | 37 | 20 |
330 | 100 | 44 | 39 | 17 |
330 | 110 | 52 | 33 | 25 |
330 | 132 | 61 | 60 | 11 |
330 | 220 | 109 | 100 | 11 |
336 | 98 | 41 | 40 | 17 |
336 | 112 | 53 | 35 | 24 |
336 | 128 | 61 | 52 | 15 |
336 | 392 | 195 | 193 | 4 |
360 | 90 | 36 | 29 | 25 |
360 | 100 | 41 | 41 | 18 |
360 | 162 | 80 | 41 | 41 |
390 | 156 | 75 | 68 | 13 |
396 | 176 | 87 | 55 | 34 |
396 | 198 | 97 | 90 | 11 |
396 | 242 | 120 | 109 | 13 |
The list of primitive Heronian triangles whose sides do not exceed 6,000,000 has been computed by Kurz (2008).
Heronian triangles with perfect square sides are related to the Perfect cuboid problem. As of February 2021, only two primitive Heronian triangles with perfect square sides are known:
(1853², 4380², 4427², Area=32918611718880), published in 2013. [25]
(11789², 68104² , 68595², Area=284239560530875680), published in 2018. [26]
A shape is called equable if its area equals its perimeter. There are exactly five equable Heronian triangles: the ones with side lengths (5,12,13), (6,8,10), (6,25,29), (7,15,20), and (9,10,17), [27] [28] though only four of them are primitive.
Since the area of an equilateral triangle with rational sides is an irrational number, no equilateral triangle is Heronian. However, a sequence of isosceles Heronian triangles that are "almost equilateral" can be developed from the duplication of right-angled triangles, in which the hypotenuse is almost twice as long as one of the legs. The first few examples of these almost-equilateral triangles are listed in the following table (sequence A102341 in the OEIS ):
Side length | Area | ||
---|---|---|---|
a | b=a | c | |
5 | 5 | 6 | 12 |
17 | 17 | 16 | 120 |
65 | 65 | 66 | 1848 |
241 | 241 | 240 | 25080 |
901 | 901 | 902 | 351780 |
3361 | 3361 | 3360 | 4890480 |
12545 | 12545 | 12546 | 68149872 |
46817 | 46817 | 46816 | 949077360 |
There is a unique sequence of Heronian triangles that are "almost equilateral" because the three sides are of the form n − 1, n, n + 1. A method for generating all solutions to this problem based on continued fractions was described in 1864 by Edward Sang, [29] and in 1880 Reinhold Hoppe gave a closed-form expression for the solutions. [30] The first few examples of these almost-equilateral triangles are listed in the following table (sequence A003500 in the OEIS ):
Side length | Area | Inradius | ||
---|---|---|---|---|
n − 1 | n | n + 1 | ||
3 | 4 | 5 | 6 | 1 |
13 | 14 | 15 | 84 | 4 |
51 | 52 | 53 | 1170 | 15 |
193 | 194 | 195 | 16296 | 56 |
723 | 724 | 725 | 226974 | 209 |
2701 | 2702 | 2703 | 3161340 | 780 |
10083 | 10084 | 10085 | 44031786 | 2911 |
37633 | 37634 | 37635 | 613283664 | 10864 |
Subsequent values of n can be found by multiplying the previous value by 4, then subtracting the value prior to that one (52 = 4 × 14 − 4, 194 = 4 × 52 − 14, etc.), thus:
where t denotes any row in the table. This is a Lucas sequence. Alternatively, the formula generates all n for positive integers t. Equivalently, let A = area and y = inradius, then,
where {n, y} are solutions to n2 − 12y2 = 4. A small transformation n = 2x yields a conventional Pell equation x2 − 3y2 = 1, the solutions of which can then be derived from the regular continued fraction expansion for √3. [31]
The variable n is of the form , where k is 7, 97, 1351, 18817, .... The numbers in this sequence have the property that k consecutive integers have integral standard deviation. [32]
In mathematics, the Euclidean algorithm, or Euclid's algorithm, is an efficient method for computing the greatest common divisor (GCD) of two integers (numbers), the largest number that divides them both without a remainder. It is named after the ancient Greek mathematician Euclid, who first described it in his Elements . It is an example of an algorithm, a step-by-step procedure for performing a calculation according to well-defined rules, and is one of the oldest algorithms in common use. It can be used to reduce fractions to their simplest form, and is a part of many other number-theoretic and cryptographic calculations.
A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. Such a triple is commonly written (a, b, c), a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k. A triangle whose side lengths are a Pythagorean triple is a right triangle and called a Pythagorean triangle.
A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular forming a right angle.
In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas). It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections. When the defining polynomial is not absolutely irreducible, the zero set is generally not considered a quadric, although it is often called a degenerate quadric or a reducible quadric.
In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power n. Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group characters, and the discrete Fourier transform.
In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each other and are each 60°. It is also a regular polygon, so it is also referred to as a regular triangle.
In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively. Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case.
The square root of 2 is a positive real number that, when multiplied by itself or squared, equals the number 2. It may be written in mathematics as or . It is an algebraic number, and therefore not a transcendental number. Technically, it should be called the principal square root of 2, to distinguish it from the negative number with the same property.
In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. It is a method which relies on the well-ordering principle, and is often used to show that a given equation, such as a Diophantine equation, has no solutions.
In geometry, a set of points are said to be concyclic if they lie on a common circle. A polygon whose vertices are concyclic is called a cyclic polygon, and the circle is called its circumscribing circle or circumcircle. All concyclic points are equidistant from the center of the circle.
In mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters. Parametric equations are commonly used to express the coordinates of the points that make up a geometric object such as a curve or surface, called a parametric curve and parametric surface, respectively. In such cases, the equations are collectively called a parametric representation, or parametric system, or parameterization of the object.
In mathematics, an Euler brick, named after Leonhard Euler, is a rectangular cuboid whose edges and face diagonals all have integer lengths. A primitive Euler brick is an Euler brick whose edge lengths are relatively prime(also called as co-primes). A perfect Euler brick is one whose space diagonal is also an integer, but such a brick has not yet been found.
A special right triangle is a right triangle with some regular feature that makes calculations on the triangle easier, or for which simple formulas exist. For example, a right triangle may have angles that form simple relationships, such as 45°–45°–90°. This is called an "angle-based" right triangle. A "side-based" right triangle is one in which the lengths of the sides form ratios of whole numbers, such as 3 : 4 : 5, or of other special numbers such as the golden ratio. Knowing the relationships of the angles or ratios of sides of these special right triangles allows one to quickly calculate various lengths in geometric problems without resorting to more advanced methods.
A Pythagorean quadruple is a tuple of integers a, b, c, and d, such that a2 + b2 + c2 = d2. They are solutions of a Diophantine equation and often only positive integer values are considered. However, to provide a more complete geometric interpretation, the integer values can be allowed to be negative and zero (thus allowing Pythagorean triples to be included) with the only condition being that d > 0. In this setting, a Pythagorean quadruple (a, b, c, d) defines a cuboid with integer side lengths |a|, |b|, and |c|, whose space diagonal has integer length d; with this interpretation, Pythagorean quadruples are thus also called Pythagorean boxes. In this article we will assume, unless otherwise stated, that the values of a Pythagorean quadruple are all positive integers.
In algebra, the greatest common divisor of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers.
In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives: extrinsically, relating to their embedding in Euclidean space and intrinsically, reflecting their properties determined solely by the distance within the surface as measured along curves on the surface. One of the fundamental concepts investigated is the Gaussian curvature, first studied in depth by Carl Friedrich Gauss, who showed that curvature was an intrinsic property of a surface, independent of its isometric embedding in Euclidean space.
Besides Euclid's formula, many other formulas for generating Pythagorean triples have been developed.
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides.
An integer triangle or integral triangle is a triangle all of whose side lengths are integers. A rational triangle is one whose side lengths are rational numbers; any rational triangle can be rescaled by the lowest common denominator of the sides to obtain a similar integer triangle, so there is a close relationship between integer triangles and rational triangles.
In mathematics, the rational points on the unit circle are those points (x, y) such that both x and y are rational numbers ("fractions") and satisfy x2 + y2 = 1. The set of such points turns out to be closely related to primitive Pythagorean triples. Consider a primitive right triangle, that is, with integer side lengths a, b, c, with c the hypotenuse, such that the sides have no common factor larger than 1. Then on the unit circle there exists the rational point (a/c, b/c), which, in the complex plane, is just a/c + ib/c, where i is the imaginary unit. Conversely, if (x, y) is a rational point on the unit circle in the 1st quadrant of the coordinate system (i.e. x > 0, y > 0), then there exists a primitive right triangle with sides xc, yc, c, with c being the least common multiple of the denominators of x and y. There is a correspondence between points (a, b) in the x-y plane and points a + ib in the complex plane which is used below.