In monetary economics, the equation of exchange is the relation:
where, for a given period,
Thus PQ is the level of nominal expenditures. This equation is a rearrangement of the definition of velocity: . As such, without the introduction of any assumptions, it is a tautology. The quantity theory of money adds assumptions about the money supply, the price level, and the effect of interest rates on velocity to create a theory about the causes of inflation and the effects of monetary policy.
In earlier analysis before the wide availability of the national income and product accounts, the equation of exchange was more frequently expressed in transactions form:
where
The foundation of the equation of exchange is the more complex relation:
where:
The equation:
is based upon the presumption of the classical dichotomy — that there is a relatively clean distinction between overall increases or decreases in prices and underlying, “real” economic variables — and that this distinction may be captured in terms of price indices, so that inflationary or deflationary components of p may be extracted as the multiplier P, which is the aggregate price level:
where is a row vector of relative prices; and likewise for
In 2008 economist Andrew Naganoff (Russian : Эндрю Наганов) proposed an integral form of the equation of exchange, where on the left side of the equation is under the integral sign, and on the right side is a sum from i=1 to . Generally, could be infinite. There are two variants of this formula:
=
and
The simplest cases for the dissipative scaling factors and are: , .
Also, can be determined by the methods of the fuzzy sets.
If liquidity function , then, by the mean value theorem:
=
Naganoff's formula is used to describe in details the processes of inflation and deflation, Internet trading and cryptocurrencies.
The quantity theory of money is most often expressed and explained in mainstream economics by reference to the equation of exchange. For example, a rudimentary theory could begin with the rearrangement
If and were constant or growing at the same fixed rate as each other, then:
and thus
where
That is to say that, if and were constant or growing at equal fixed rates, then the inflation rate would exactly equal the growth rate of the money supply.
An opponent of the quantity theory would not be bound to reject the equation of exchange, but could instead postulate offsetting responses (direct or indirect) of or of to .
Economists Alfred Marshall, A.C. Pigou, and John Maynard Keynes, associated with Cambridge University, focusing on money demand instead of money supply, argued that a certain portion of the money supply will not be used for transactions, but instead it will be held for the convenience and security of having cash on hand. This proportion of cash is commonly represented as , a portion of nominal income (). (The Cambridge economists also thought wealth would play a role, but wealth is often omitted for simplicity.) The Cambridge equation for demand for cash balances is thus: [1]
which, given the classical dichotomy and that real income must equal expenditures , is equivalent to
Assuming that the economy is at equilibrium (), that real income is exogenous, and that k is fixed in the short run, the Cambridge equation is equivalent to the equation of exchange with velocity equal to the inverse of k:
The money demand function is often conceptualized in terms of a liquidity function, ,
where is real income and is the real rate of interest. If is taken to be a function of , then in equilibrium
The equation of exchange was stated by John Stuart Mill [2] who expanded on the ideas of David Hume. [3] The algebraic formulation comes from Irving Fisher, 1911.
In physics, specifically in electromagnetism, the Lorentz force law is the combination of electric and magnetic force on a point charge due to electromagnetic fields. The Lorentz force, on the other hand, is a physical effect that occurs in the vicinity of electrically neutral, current-carrying conductors causing moving electrical charges to experience a magnetic force.
In Newtonian mechanics, momentum is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If m is an object's mass and v is its velocity, then the object's momentum p is: In the International System of Units (SI), the unit of measurement of momentum is the kilogram metre per second (kg⋅m/s), which is dimensionally equivalent to the newton-second.
The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).
In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it. Such a description typically arises in the limit of vanishing viscosity, i.e., for an inviscid fluid and with no vorticity present in the flow.
The ideal gas law, also called the general gas equation, is the equation of state of a hypothetical ideal gas. It is a good approximation of the behavior of many gases under many conditions, although it has several limitations. It was first stated by Benoît Paul Émile Clapeyron in 1834 as a combination of the empirical Boyle's law, Charles's law, Avogadro's law, and Gay-Lussac's law. The ideal gas law is often written in an empirical form:
In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system. The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.
In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as in Brownian motion. The equation can be generalized to other observables as well. The Fokker-Planck equation has multiple applications in information theory, graph theory, data science, finance, economics etc.
In physics, Hamiltonian mechanics is a reformulation of Lagrangian mechanics that emerged in 1833. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same physical phenomena.
In condensed matter physics, Bloch's theorem states that solutions to the Schrödinger equation in a periodic potential can be expressed as plane waves modulated by periodic functions. The theorem is named after the Swiss physicist Felix Bloch, who discovered the theorem in 1929. Mathematically, they are written
A continuity equation or transport equation is an equation that describes the transport of some quantity. It is particularly simple and powerful when applied to a conserved quantity, but it can be generalized to apply to any extensive quantity. Since mass, energy, momentum, electric charge and other natural quantities are conserved under their respective appropriate conditions, a variety of physical phenomena may be described using continuity equations.
In theoretical physics and mathematical physics, analytical mechanics, or theoretical mechanics is a collection of closely related formulations of classical mechanics. Analytical mechanics uses scalar properties of motion representing the system as a whole—usually its kinetic energy and potential energy. The equations of motion are derived from the scalar quantity by some underlying principle about the scalar's variation.
In analytical mechanics, generalized coordinates are a set of parameters used to represent the state of a system in a configuration space. These parameters must uniquely define the configuration of the system relative to a reference state. The generalized velocities are the time derivatives of the generalized coordinates of the system. The adjective "generalized" distinguishes these parameters from the traditional use of the term "coordinate" to refer to Cartesian coordinates.
In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces. The assumption that the bodies are rigid simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference frames attached to each body. This excludes bodies that display fluid, highly elastic, and plastic behavior.
The quantity theory of money is a hypothesis within monetary economics which states that the general price level of goods and services is directly proportional to the amount of money in circulation, and that the causality runs from money to prices. This implies that the theory potentially explains inflation. It originated in the 16th century and has been proclaimed the oldest surviving theory in economics.
The Boltzmann equation or Boltzmann transport equation (BTE) describes the statistical behaviour of a thermodynamic system not in a state of equilibrium; it was devised by Ludwig Boltzmann in 1872. The classic example of such a system is a fluid with temperature gradients in space causing heat to flow from hotter regions to colder ones, by the random but biased transport of the particles making up that fluid. In the modern literature the term Boltzmann equation is often used in a more general sense, referring to any kinetic equation that describes the change of a macroscopic quantity in a thermodynamic system, such as energy, charge or particle number.
In mechanics, virtual work arises in the application of the principle of least action to the study of forces and movement of a mechanical system. The work of a force acting on a particle as it moves along a displacement is different for different displacements. Among all the possible displacements that a particle may follow, called virtual displacements, one will minimize the action. This displacement is therefore the displacement followed by the particle according to the principle of least action.
The work of a force on a particle along a virtual displacement is known as the virtual work.
In quantum mechanics, the probability current is a mathematical quantity describing the flow of probability. Specifically, if one thinks of probability as a heterogeneous fluid, then the probability current is the rate of flow of this fluid. It is a real vector that changes with space and time. Probability currents are analogous to mass currents in hydrodynamics and electric currents in electromagnetism. As in those fields, the probability current is related to the probability density function via a continuity equation. The probability current is invariant under gauge transformation.
The convection–diffusion equation is a parabolic partial differential equation that combines the diffusion and convection (advection) equations. It describes physical phenomena where particles, energy, or other physical quantities are transferred inside a physical system due to two processes: diffusion and convection. Depending on context, the same equation can be called the advection–diffusion equation, drift–diffusion equation, or (generic) scalar transport equation.
In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle. It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his presentation to the Turin Academy of Science in 1760 culminating in his 1788 grand opus, Mécanique analytique.
The Darwin Lagrangian describes the interaction to order between two charged particles in a vacuum where c is the speed of light. It was derived before the advent of quantum mechanics and resulted from a more detailed investigation of the classical, electromagnetic interactions of the electrons in an atom. From the Bohr model it was known that they should be moving with velocities approaching the speed of light.