Equidistribution theorem

Last updated
Illustration of filling the unit interval (horizontal axis) with the first n terms using the equidistribution theorem with four common irrational numbers, for n from 0 to 999 (vertical axis). The 113 distinct bands for p are due to the closeness of its value to the rational number 355/113. Similarly, the 7 distinct groups are due to p being approximately 22/7.
(click for detailed view) Equidistribution theorem.svg
Illustration of filling the unit interval (horizontal axis) with the first n terms using the equidistribution theorem with four common irrational numbers, for n from 0 to 999 (vertical axis). The 113 distinct bands for π are due to the closeness of its value to the rational number 355/113. Similarly, the 7 distinct groups are due to π being approximately 22/7.
(click for detailed view)

In mathematics, the equidistribution theorem is the statement that the sequence

Contents

a, 2a, 3a, ... mod 1

is uniformly distributed on the circle , when a is an irrational number. It is a special case of the ergodic theorem where one takes the normalized angle measure .

History

While this theorem was proved in 1909 and 1910 separately by Hermann Weyl, Wacław Sierpiński and Piers Bohl, variants of this theorem continue to be studied to this day.

In 1916, Weyl proved that the sequence a, 22a, 32a, ... mod 1 is uniformly distributed on the unit interval. In 1937, Ivan Vinogradov proved that the sequence pna mod 1 is uniformly distributed, where pn is the nth prime. Vinogradov's proof was a byproduct of the odd Goldbach conjecture, that every sufficiently large odd number is the sum of three primes.

George Birkhoff, in 1931, and Aleksandr Khinchin, in 1933, proved that the generalization x + na, for almost all x, is equidistributed on any Lebesgue measurable subset of the unit interval. The corresponding generalizations for the Weyl and Vinogradov results were proven by Jean Bourgain in 1988.

Specifically, Khinchin showed that the identity

holds for almost all x and any Lebesgue integrable function ƒ. In modern formulations, it is asked under what conditions the identity

might hold, given some general sequence bk.

One noteworthy result is that the sequence 2ka mod 1 is uniformly distributed for almost all, but not all, irrational a. Similarly, for the sequence bk = 2ka, for every irrational a, and almost all x, there exists a function ƒ for which the sum diverges. In this sense, this sequence is considered to be a universally bad averaging sequence, as opposed to bk = k, which is termed a universally good averaging sequence, because it does not have the latter shortcoming.

A powerful general result is Weyl's criterion, which shows that equidistribution is equivalent to having a non-trivial estimate for the exponential sums formed with the sequence as exponents. For the case of multiples of a, Weyl's criterion reduces the problem to summing finite geometric series.

See also

Related Research Articles

<span class="mw-page-title-main">Chinese remainder theorem</span> About simultaneous congruences

In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition that the divisors are pairwise coprime.

<span class="mw-page-title-main">Quadratic reciprocity</span> Gives conditions for the solvability of quadratic equations modulo prime numbers

In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. Due to its subtlety, it has many formulations, but the most standard statement is:

In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability.

<span class="mw-page-title-main">Diophantine approximation</span> Rational-number approximation of a real number

In number theory, the study of Diophantine approximation deals with the approximation of real numbers by rational numbers. It is named after Diophantus of Alexandria.

Ergodic theory is a branch of mathematics that studies statistical properties of deterministic dynamical systems; it is the study of ergodicity. In this context, "statistical properties" refers to properties which are expressed through the behavior of time averages of various functions along trajectories of dynamical systems. The notion of deterministic dynamical systems assumes that the equations determining the dynamics do not contain any random perturbations, noise, etc. Thus, the statistics with which we are concerned are properties of the dynamics.

In mathematics, pointwise convergence is one of various senses in which a sequence of functions can converge to a particular function. It is weaker than uniform convergence, to which it is often compared.

In number theory, Khinchin's constant is a mathematical constant related to the simple continued fraction expansions of many real numbers. In particular Aleksandr Yakovlevich Khinchin proved that for almost all real numbers x, the coefficients ai of the continued fraction expansion of x have a finite geometric mean that is independent of the value of x. It is known as Khinchin's constant and denoted by K0.

In mathematics, an exponential sum may be a finite Fourier series, or other finite sum formed using the exponential function, usually expressed by means of the function

In mathematics, a sequence (s1, s2, s3, ...) of real numbers is said to be equidistributed, or uniformly distributed, if the proportion of terms falling in a subinterval is proportional to the length of that subinterval. Such sequences are studied in Diophantine approximation theory and have applications to Monte Carlo integration.

In mathematics Lévy's constant occurs in an expression for the asymptotic behaviour of the denominators of the convergents of simple continued fractions. In 1935, the Soviet mathematician Aleksandr Khinchin showed that the denominators qn of the convergents of the continued fraction expansions of almost all real numbers satisfy

<span class="mw-page-title-main">Mixing (mathematics)</span> Mathematical description of mixing substances

In mathematics, mixing is an abstract concept originating from physics: the attempt to describe the irreversible thermodynamic process of mixing in the everyday world: e.g. mixing paint, mixing drinks, industrial mixing.

<span class="mw-page-title-main">Dyadic transformation</span> Doubling map on the unit interval

The dyadic transformation is the mapping

In measure theory, an area of mathematics, Egorov's theorem establishes a condition for the uniform convergence of a pointwise convergent sequence of measurable functions. It is also named Severini–Egoroff theorem or Severini–Egorov theorem, after Carlo Severini, an Italian mathematician, and Dmitri Egorov, a Russian mathematician and geometer, who published independent proofs respectively in 1910 and 1911.

<span class="mw-page-title-main">Interval exchange transformation</span>

In mathematics, an interval exchange transformation is a kind of dynamical system that generalises circle rotation. The phase space consists of the unit interval, and the transformation acts by cutting the interval into several subintervals, and then permuting these subintervals. They arise naturally in the study of polygonal billiards and in area-preserving flows.

In mathematics, an ergodic sequence is a certain type of integer sequence, having certain equidistribution properties.

In mathematics, the Bombieri–Vinogradov theorem is a major result of analytic number theory, obtained in the mid-1960s, concerning the distribution of primes in arithmetic progressions, averaged over a range of moduli. The first result of this kind was obtained by Mark Barban in 1961 and the Bombieri–Vinogradov theorem is a refinement of Barban's result. The Bombieri–Vinogradov theorem is named after Enrico Bombieri and A. I. Vinogradov, who published on a related topic, the density hypothesis, in 1965.

In mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies that the average behavior of the system can be deduced from the trajectory of a "typical" point. Equivalently, a sufficiently large collection of random samples from a process can represent the average statistical properties of the entire process. Ergodicity is a property of the system; it is a statement that the system cannot be reduced or factored into smaller components. Ergodic theory is the study of systems possessing ergodicity.

<span class="mw-page-title-main">Irrational rotation</span> Rotation of a circle by an angle of π times an irrational number

In the mathematical theory of dynamical systems, an irrational rotation is a map

In mathematics, the Barban–Davenport–Halberstam theorem is a statement about the distribution of prime numbers in an arithmetic progression. It is known that in the long run primes are distributed equally across possible progressions with the same difference. Theorems of the Barban–Davenport–Halberstam type give estimates for the error term, determining how close to uniform the distributions are.

In mathematics, Kingman's subadditive ergodic theorem is one of several ergodic theorems. It can be seen as a generalization of Birkhoff's ergodic theorem. Intuitively, the subadditive ergodic theorem is a kind of random variable version of Fekete's lemma. As a result, it can be rephrased in the language of probability, e.g. using a sequence of random variables and expected values. The theorem is named after John Kingman.

References

Historical references

Modern references