Eriksen flanker task

Last updated

In cognitive psychology, the Eriksen flanker task is a set of response inhibition tests used to assess the ability to suppress responses that are inappropriate in a particular context. The target is flanked by non-target stimuli which correspond either to the same directional response as the target (congruent flankers), to the opposite response (incongruent flankers), or to neither (neutral flankers). The task is named for American psychologists Barbara. A. Eriksen & Charles W. Eriksen, who first published the task in 1974, and for the flanker stimuli that surround the target. [1] In the tests, a directional response (usually left or right) is assigned to a central target stimulus. Various forms of the task are used to measure information processing and selective attention. [1]

Contents

Procedure and method

In an Eriksen Flanker Task there are three types of stimuli used:

Incongruent, congruent, and neutral stimuli represented by arrows. This is what a participant may see in a standard Eriksen Flanker Task Congruent, Incongruent, and Neutral Flanker stimuli.jpg
Incongruent, congruent, and neutral stimuli represented by arrows. This is what a participant may see in a standard Eriksen Flanker Task
  1. Congruent stimulus- Flankers call for the same response as the target, and may appear identical. [2] Also referred to as the compatible condition.
  2. Incongruent stimulus- Flanker items call for the opposite response of the target and are represented by different symbols. [2] Also referred to as the incompatible condition.
  3. Neutral stimulus- Flanker items neither call for the same response nor evoke response conflict. [3]

In the original test described by Eriksen and Eriksen in 1974, letter stimuli were used. Subjects were instructed to make directional responses to certain letters, for example a right response could be associated to the letters H and K, and a left response to S and C. Each stimulus consisted of a set of seven letters, with the target stimulus placed in the central position. Examples of congruent stimuli would be HHHKHHH and CCCSCCC, where both the target stimulus and the flankers correspond to the same directional response. Examples of incongruent stimuli could be HHHSHHH and CCCHCCC , where the central target letter and the flankers correspond to opposite directional responses. Choice reaction times (CRTs or RTs) were then recorded and compared between congruent and incongruent conditions. [1]

Other variants of the Eriksen Flanker Task have used numbers, [4] color patches, [5] or arrows as stimuli. Also, although most Eriksen Flanker Tasks show the flankers on the left and right of the target, they can also be placed above or below the target, or in other spatial orientations. These examples all use an arbitrary mapping between the stimulus and the response. Another possibility is to use a natural mapping, with arrows as stimuli. For example, Kopp et al. (1994) [6] used left and right arrows, with flanker stimuli above and below the target. The flankers could be arrows pointing in the same direction as the target (congruent) the opposite direction (incongruent) or squares (neutral). More commonly, flankers have been arranged in a horizontal array, as with letter stimuli, so <<<<< would be a congruent stimulus, <<><< an incongruent stimulus. [7]

Neurological basis

The Anterior Cingulate Cortex (ACC) is highlighted in yellow MRI anterior cingulate.png
The Anterior Cingulate Cortex (ACC) is highlighted in yellow

When subjects participate in the Eriksen Flanker Task, the anterior cingulate cortex, or the ACC, is activated. The ACC is a frontal brain structure responsible for a wide variety of autonomic functions. It is observed to be more active in response to processing incongruent stimuli than congruent stimuli. It is believed that the ACC may monitor the amount of conflict in an Eriksen Flanker trial. Then, that measured conflict is used to enhance the amount of control the participant has on the next trial. Thus indicating that the more conflict presented on trial n, the more control expressed on trial n + 1. [8]

This process leads to an interaction called the Gratton effect, which is the finding of a lower interference effect after an incongruent trial compared to the effect after a congruent trial. On this first trial (trial n) the incongruent stimulus presented will lead to an increase in conflict detected by the ACC. On trial n + 1, the increased conflict will lead to more control, causing the distracting, or flanker, stimuli to be more readily ignored. [8]

Experimental findings

The flanker paradigm was originally introduced as a way of studying the cognitive processes involved in detection and recognition of targets in the presence of distracting information, or "noise". The 1974 study found that CRT was significantly greater in incompatible than compatible conditions, a difference termed the flanker effect. [1]

Earlier work had used visual search, [9] but because these tasks involve an active scan of the environment to identify the target stimulus, this experimental design made it difficult to separate the effects of distraction from the effects of the search process. In the flanker paradigm, the position of the target is always known—there is no search process. Nonetheless interference still occurs, so it can be studied independently of search mechanisms. Eriksen and Schultz (1979) [10] varied a number of features of the flanker tests, for example the size and contrast of the letters, or the use of forward or backward masking. They proposed a continuous flow model of perception in which information is processed in parallel for different stimulus elements, and accumulates over time until sufficient information is available to determine a response.

More recent work in this area has used neurophysiological measures such as event-related potentials [11] or imaging techniques such as fMRI. [12]

Effects on performance

A variety of factors have been shown to affect subject's performance on flanker tasks. Acute administration of antihistamine or alcohol severely impairs CRT in test measures, a deficit which Ramaekers et al. (1992) [13] found to carry over to driving tests. The study used an on-the-road driving tests, and several laboratory tests including the letter version of the Eriksen task to assess the effects of two antihistamines and alcohol on driving skills. Both alcohol and the antihistamine cetirizine impaired performance in the test measures, and their effects were additive. The non-sedating antihistamine loratadine had no effect on any of the measures studied. The arrow version of the flanker test has also been evaluated as a method of detecting impairment due to alcohol and drugs in drivers at the roadside, [14] demonstrating the importance of selective attention skills to spatial abilities such as vehicle operation.

Various psychiatric and neurological conditions also affect performance on flanker tasks. While subjects with chronic schizophrenia performed similarly to control subjects on flanker tasks of both conditions, acute schizophrenics have a significantly greater RT with incongruent flanker conditions. This indicates the nature of cognitive dysfunction for the latter may involve broadening of selective attention. [15] Studies involving sufferers of Parkinson's disease [16] found similar difficulties with suppressing incorrect response activation due to flanker interference, especially when under speed stress.

Moderate exercise, conversely, has been shown to improve performance on flanker tests, [17] suggesting efficiency of cognitive control operates constructively with physical activity.

Curiously, lowering serotonin levels via acute tryptophan depletion does not affect performance on a flanker task or corresponding EEG readings, but does alter cardiac response to incongruent stimuli, suggesting dissociation between cardiac and electro-cortical responses to errors and feedback when measuring cognitive flexibility. [18]

Effect of sequential testing

The conflict effect of flanker interference have been well-documented to decrease with repeat testing, especially following incongruent/conflict conditions in what is known as the Gratton Effect. [19] [20] [21] However the precise nature of these sequential dependencies is still subject to speculation; the effect may be stimulus-independent or stimulus-specific, [19] and recent studies suggest the effect is not solely attributable to conflict adaptation but forms of associative priming. [22] Still other research maintains the Gratton effect can be eliminated entirely if sequential biases are removed and that conflict adaptation failed to account for any performance results, suggesting instead support for a congruency switch cost model. [23]

The Gratton effect of conflict adaptation effect is also well documented in studies of event-related brain potentials (ERPs), which typically show reduced activity for high-conflict trials following other high-conflict trials. [24] [25] [26] [27] Notably, after removing confounding alternative explanations of conflict adaptation, conflict adaptation is still observed in ERP indices. [28] An advantage of using ERPs is the ability to examine subtle differences in brain activity that do not appear in behavioral measures, such as response times or error rates.

Similar conflict tasks

There are three different types of conflict tasks that research has been largely focused on, one of these being the Eriksen Flanker Task. All three of these tasks have mainly been viewed as identical in terms of the control processes that are involved. Due to this, inferences and predictions about one task have been made by theorists based on the published findings in a different task.

Another conflict task that receives significant focus is the Stroop task. In this test, participants are told to name the color of a word as quickly as they can and as accurately as possible. The trick is the word itself refers to a color. The word can either be congruent, which would mean the word would match the font color, such as the word "blue" in blue font color, or it can be incongruent where the word would not match the font color like the word "purple" in yellow font color. Just as with the Eriksen Flanker Task, the response time and accuracy of congruent words is better than those of incongruent words. [8]

The third task that is largely focused on is the Simon or spatial compatibility task. In this task, the stimulus, either a word, letter, or symbol, is shown on the right or left side of the computer screen. The participant is instructed to press the right or left button based on the content of the stimulus rather than its location. A congruent trial, for example, could be the word "left" shown on the left side of the screen, while an incongruent trial might be the word "left" on the right side of the screen. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Anterior cingulate cortex</span> Brain region

In the human brain, the anterior cingulate cortex (ACC) is the frontal part of the cingulate cortex that resembles a "collar" surrounding the frontal part of the corpus callosum. It consists of Brodmann areas 24, 32, and 33.

<span class="mw-page-title-main">Event-related potential</span> Brain response that is the direct result of a specific sensory, cognitive, or motor event

An event-related potential (ERP) is the measured brain response that is the direct result of a specific sensory, cognitive, or motor event. More formally, it is any stereotyped electrophysiological response to a stimulus. The study of the brain in this way provides a noninvasive means of evaluating brain functioning.

<span class="mw-page-title-main">Stroop effect</span> Effect of psychological interference on reaction time

In psychology, the Stroop effect is the delay in reaction time between congruent and incongruent stimuli.

The N400 is a component of time-locked EEG signals known as event-related potentials (ERP). It is a negative-going deflection that peaks around 400 milliseconds post-stimulus onset, although it can extend from 250-500 ms, and is typically maximal over centro-parietal electrode sites. The N400 is part of the normal brain response to words and other meaningful stimuli, including visual and auditory words, sign language signs, pictures, faces, environmental sounds, and smells.

<span class="mw-page-title-main">P300 (neuroscience)</span> Event-related potential

The P300 (P3) wave is an event-related potential (ERP) component elicited in the process of decision making. It is considered to be an endogenous potential, as its occurrence links not to the physical attributes of a stimulus, but to a person's reaction to it. More specifically, the P300 is thought to reflect processes involved in stimulus evaluation or categorization.

The mismatch negativity (MMN) or mismatch field (MMF) is a component of the event-related potential (ERP) to an odd stimulus in a sequence of stimuli. It arises from electrical activity in the brain and is studied within the field of cognitive neuroscience and psychology. It can occur in any sensory system, but has most frequently been studied for hearing and for vision, in which case it is abbreviated to vMMN. The (v)MMN occurs after an infrequent change in a repetitive sequence of stimuli For example, a rare deviant (d) stimulus can be interspersed among a series of frequent standard (s) stimuli. In hearing, a deviant sound can differ from the standards in one or more perceptual features such as pitch, duration, loudness, or location. The MMN can be elicited regardless of whether someone is paying attention to the sequence. During auditory sequences, a person can be reading or watching a silent subtitled movie, yet still show a clear MMN. In the case of visual stimuli, the MMN occurs after an infrequent change in a repetitive sequence of images.

Priming is a concept in psychology to describe how exposure to one stimulus may influence a response to a subsequent stimulus, without conscious guidance or intention. The priming effect is the positive or negative effect of a rapidly presented stimulus on the processing of a second stimulus that appears shortly after. Generally speaking, the generation of priming effect depends on the existence of some positive or negative relationship between priming and target stimuli. For example, the word nurse might be recognized more quickly following the word doctor than following the word bread. Priming can be perceptual, associative, repetitive, positive, negative, affective, semantic, or conceptual. Priming effects involve word recognition, semantic processing, attention, unconscious processing, and many other issues, and are related to differences in various writing systems. How quickly this effect occurs is contested; some researchers claim that priming effects are almost instantaneous.

In neuroscience, the lateralized readiness potential (LRP) is an event-related brain potential, or increase in electrical activity at the surface of the brain, that is thought to reflect the preparation of motor activity on a certain side of the body; in other words, it is a spike in the electrical activity of the brain that happens when a person gets ready to move one arm, leg, or foot. It is a special form of bereitschaftspotential. LRPs are recorded using electroencephalography (EEG) and have numerous applications in cognitive neuroscience.

Difference due to memory (Dm) indexes differences in neural activity during the study phase of an experiment for items that subsequently are remembered compared to items that are later forgotten. It is mainly discussed as an event-related potential (ERP) effect that appears in studies employing a subsequent memory paradigm, in which ERPs are recorded when a participant is studying a list of materials and trials are sorted as a function of whether they go on to be remembered or not in the test phase. For meaningful study material, such as words or line drawings, items that are subsequently remembered typically elicit a more positive waveform during the study phase. This difference typically occurs in the range of 400–800 milliseconds (ms) and is generally greatest over centro-parietal recording sites, although these characteristics are modulated by many factors.

The P3a, or novelty P3, is a component of time-locked (EEG) signals known as event-related potentials (ERP). The P3a is a positive-going scalp-recorded brain potential that has a maximum amplitude over frontal/central electrode sites with a peak latency falling in the range of 250–280 ms. The P3a has been associated with brain activity related to the engagement of attention and the processing of novelty.

In neuroscience, the visual P200 or P2 is a waveform component or feature of the event-related potential (ERP) measured at the human scalp. Like other potential changes measurable from the scalp, this effect is believed to reflect the post-synaptic activity of a specific neural process. The P2 component, also known as the P200, is so named because it is a positive going electrical potential that peaks at about 200 milliseconds after the onset of some external stimulus. This component is often distributed around the centro-frontal and the parieto-occipital areas of the scalp. It is generally found to be maximal around the vertex of the scalp, however there have been some topographical differences noted in ERP studies of the P2 in different experimental conditions.

The N200, or N2, is an event-related potential (ERP) component. An ERP can be monitored using a non-invasive electroencephalography (EEG) cap that is fitted over the scalp on human subjects. An EEG cap allows researchers and clinicians to monitor the minute electrical activity that reaches the surface of the scalp from post-synaptic potentials in neurons, which fluctuate in relation to cognitive processing. EEG provides millisecond-level temporal resolution and is therefore known as one of the most direct measures of covert mental operations in the brain. The N200 in particular is a negative-going wave that peaks 200-350ms post-stimulus and is found primarily over anterior scalp sites. Past research focused on the N200 as a mismatch detector, but it has also been found to reflect executive cognitive control functions, and has recently been used in the study of language.

Error-related negativity (ERN), sometimes referred to as the Ne, is a component of an event-related potential (ERP). ERPs are electrical activity in the brain as measured through electroencephalography (EEG) and time-locked to an external event or a response. A robust ERN component is observed after errors are committed during various choice tasks, even when the participant is not explicitly aware of making the error; however, in the case of unconscious errors the ERN is reduced. An ERN is also observed when non-human primates commit errors.

The late positive component or late positive complex (LPC) is a positive-going event-related brain potential (ERP) component that has been important in studies of explicit recognition memory. It is generally found to be largest over parietal scalp sites, beginning around 400–500 ms after the onset of a stimulus and lasting for a few hundred milliseconds. It is an important part of the ERP "old/new" effect, which may also include modulations of an earlier component similar to an N400. Similar positivities have sometimes been referred to as the P3b, P300, and P600. Here, we use the term "LPC" in reference to this late positive component.

<span class="mw-page-title-main">P3b</span>

The P3b is a subcomponent of the P300, an event-related potential (ERP) component that can be observed in human scalp recordings of brain electrical activity. The P3b is a positive-going amplitude peaking at around 300 ms, though the peak will vary in latency from 250 to 500 ms or later depending upon the task and on the individual subject response. Amplitudes are typically highest on the scalp over parietal brain areas.

N2pc refers to an ERP component linked to selective attention. The N2pc appears over visual cortex contralateral to the location in space to which subjects are attending; if subjects pay attention to the left side of the visual field, the N2pc appears in the right hemisphere of the brain, and vice versa. This characteristic makes it a useful tool for directly measuring the general direction of a person's attention with fine-grained temporal resolution.

<span class="mw-page-title-main">Oddball paradigm</span> Psychology research paradigm

The oddball paradigm is an experimental design used within psychology research. The oddball paradigm relies on the brain's sensitivity to rare deviant stimuli presented pseudo-randomly in a series of repeated standard stimuli. The oddball paradigm has a wide selection of stimulus types, including stimuli such as sound duration, frequency, intensity, phonetic features, complex music, or speech sequences. The reaction of the participant to this "oddball" stimulus is recorded.

In the psychology of perception and motor control, the term response priming denotes a special form of priming. Generally, priming effects take place whenever a response to a target stimulus is influenced by a prime stimulus presented at an earlier time. The distinctive feature of response priming is that prime and target are presented in quick succession and are coupled to identical or alternative motor responses. When a speeded motor response is performed to classify the target stimulus, a prime immediately preceding the target can thus induce response conflicts when assigned to a different response as the target. These response conflicts have observable effects on motor behavior, leading to priming effects, e.g., in response times and error rates. A special property of response priming is its independence from visual awareness of the prime.

In psychology, the numerical Stroop effect demonstrates the relationship between numerical values and physical sizes. When digits are presented visually, they can be physically large or small, irrespective of their actual values. Congruent pairs occur when size and value correspond while incongruent pairs occur when size and value are incompatible. It was found that when people are asked to compare digits, their reaction time tends to be slower in the case of incongruent pairs. This reaction time difference between congruent and incongruent pairs is termed the numerical Stroop effect

Affective priming, also called affect priming, is a type of response priming and was first proposed by Russell H. Fazio. This type of priming entails the evaluation of people, ideas, objects, goods, etc., not only based on the physical features of those things, but also on affective context. The affective context may come from previous life experiences, and therefore, primes may arouse emotions rather than ideas. Most research and concepts about affective priming derive from the affective priming paradigm, which looks to make judgments of neutral affective targets following positive, neutral, or negative primes. A prominent derivation of affective priming paradigm is the Affect Misattribution Procedure (AMP), developed by Payne, Cheng, Govorun, and Stewart. The main idea of AMP is to measure implicit attitudes, therefore, if the evaluation of the prime stimuli of an object is positive, it is said that the person has a positive attitude toward the object exposed.

References

  1. 1 2 3 4 Eriksen, B. A.; Eriksen, C. W. (1974). "Effects of noise letters upon identification of a target letter in a non- search task". Perception and Psychophysics. 16: 143–149. doi: 10.3758/bf03203267 . S2CID   12012872.
  2. 1 2 "Cognitive Atlas".
  3. Lamers, Martijn J. M.; Roelofs, Ardi (June 2011). "Attentional control adjustments in Eriksen and Stroop task performance can be independent of response conflict". The Quarterly Journal of Experimental Psychology. 64 (6): 1056–1081. doi:10.1080/17470218.2010.523792. PMID   21113864. S2CID   1762898.
  4. Lindgren, M.; Stenberg, G. & Rosen, I. (1996). "Effects of nicotine in visual attention tasks". Human Psychopharmacology. 11: 47–51. doi:10.1002/(sici)1099-1077(199601)11:1<47::aid-hup743>3.3.co;2-t.
  5. Rafal, R.; Gershberg, F.; Egly, R.; Ivry, R.; Kingstone, A. & Ro, T. (1996). "Response channel activation and the lateral prefrontal cortex". Neuropsychologia. 34 (12): 1197–1202. doi:10.1016/0028-3932(96)00045-0. PMID   8951831. S2CID   14335574.
  6. Kopp, B.; Mattler, U. & Rist, F. (1994). "Selective attention and response competition in schizophrenic patients". Psychiatry Research. 53 (2): 129–139. doi:10.1016/0165-1781(94)90104-x. PMID   7824673. S2CID   2744796.
  7. Ridderinkhof, K. R.; Band, G. P. & Logan, D. (1999). "A study of adaptive behavior: effects of age and irrelevant information on the ability to inhibit one's actions". Acta Psychologica. 101 (2–3): 315–337. doi:10.1016/s0001-6918(99)00010-4.
  8. 1 2 3 4 Davelaar, Eddy J. (2013). "When the Ignored Gets Bound: Sequential Effects in the Flanker Task". Frontiers in Psychology. 3: 552. doi: 10.3389/fpsyg.2012.00552 . PMC   3534361 . PMID   23293616.
  9. Eriksen, C.W.; Spencer, T. (1969). "Rate of information processing in visual perception: Some results and methodological considerations". Journal of Experimental Psychology. 79 (2): Supplement 1–16. doi:10.1037/h0026873. PMID   5779623.
  10. Eriksen, C.W.; Schultz, D.W. (1979). "Information processing in visual search: A continuous flow conception and experimental results". Perception & Psychophysics. 25 (4): 249–263. doi: 10.3758/bf03198804 . PMID   461085. S2CID   11801785.
  11. Heil, M.; Osman, A.; Wiegalman, J.; Rolke, B. & Hennighausen, E. (2000). "N200 in the Eriksen-Task: Inhibitory Executive Processes?". Journal of Psychophysiology. 14 (4): 218–225. doi:10.1027//0269-8803.14.4.218.
  12. Ullsperger, M.; von Cramon, D. Y. (2001). "Subprocesses of performance monitoring: a dissociation of error processing and response competition revealed by event-related fMRI and ERPs". NeuroImage. 14 (6): 1387–1401. doi:10.1006/nimg.2001.0935. PMID   11707094. S2CID   45998125.
  13. Ramaekers, J. G.; Uiterwijk, M. M. C. & O'Hanlon, J. F. (1992). "Effects of loratadine and cetirizine on actual driving and psychometric test performance, and EEG during driving". European Journal of Clinical Pharmacology. 42 (4): 363–369. doi:10.1007/BF00280119. PMID   1355427. S2CID   19422281.
  14. Tiplady, B.; Degia, A. & Dixon, P. (2005). "Assessment of driver impairment: Evaluation of a two-choice tester using ethanol". Transportation Research Part F: Traffic Psychology and Behaviour. 8 (4–5): 299–310. doi:10.1016/j.trf.2005.04.013.
  15. Jones, S.H.; Helmsley, D.R. & Gray, J.A. (1991). "Contextual effects on choice reaction time and accuracy in acute and chronic schizophrenics.Impairment in selective attention or in the influence of prior learning?". British Journal of Psychiatry. 159 (3): 415–421. doi:10.1192/bjp.159.3.415. PMID   1958953. S2CID   23999872.
  16. Wylie, S. A.; van den Wildenberg, W. P. M.; Ridderinkhof, K. R.; Bashore, T. R.; Powell, V. D.; Manning, C. A. & Wooten, G. F. (2009). "The effect of speed-accuracy strategy on response interference control in Parkinson's disease". Neuropsychologia. 47 (8–9): 1844–1853. doi:10.1016/j.neuropsychologia.2009.02.025. PMC   4524649 . PMID   19428416.
  17. Davrance, Karen; Hall, Ben; McMorris, Terry (Oct 2009). "Effect of acute exercise on cognitive control required during an eriksen flanker task". Journal of Sport & Exercise Psychology. 31 (5): 628–639. doi:10.1123/jsep.31.5.628. PMID   20016112.
  18. Van der Veen, F.M.; Evers, Mies; Vuurman, Jolles (Oct 2010). "Acute tryptophan depletion selectively attenuates cardiac slowing in an Eriksen flanker task". Journal of Psychopharmacology. 24 (10): 1455–1463. doi:10.1177/0269881109103801. PMID   19304860. S2CID   24185803.
  19. 1 2 Davelaar, Eddy J.; Jennifer Stevens (Feb 2009). "Sequential dependencies in the eriksen flanker task: A direct comparison of two competing accounts". Psychonomic Bulletin & Review. 16 (1): 121–126. doi: 10.3758/pbr.16.1.121 . PMID   19145021. S2CID   42912776.
  20. Purmann, Sascha; Stephanie Badd; Luna-Rodriguez Aquiles; Mike Wendt (Jun 2010). "Adaptation to frequent conflict in the eriksen flanker task: An ERP study". Journal of Psychophysiology. 25 (2): 50–59. doi:10.1027/0269-8803/a000041.
  21. Wendt, M; Luna-Rodriguez, A (2009). "Conflict-frequency affects flanker interference: role of stimulus-ensemble-specific practiceand flanker-response contingencies". Experimental Psychology. 56 (3): 206–17. doi:10.1027/1618-3169.56.3.206. PMID   19289363.
  22. Nieuwenhuis, S; Stins, JF; Posthuma, D; Polderman, TJ; Boomsma, DI; de Geus, EJ (September 2006). "Accounting for sequential trial effects in the flanker task: conflict adaptation or associative priming?". Memory & Cognition. 34 (6): 1260–72. doi: 10.3758/bf03193270 . PMID   17225507. S2CID   37582024.
  23. Schmidt, JR; De Houwer, J (September 2011). "Now you see it, now you don't: controlling for contingencies and stimulus repetitions eliminates the Gratton effect". Acta Psychologica (Submitted manuscript). 138 (1): 176–86. doi:10.1016/j.actpsy.2011.06.002. hdl: 1854/LU-1968481 . PMID   21745649.
  24. Larson, Michael J.; Clayson, Peter E.; Clawson, Ann (2014-09-01). "Making sense of all the conflict: A theoretical review and critique of conflict-related ERPs". International Journal of Psychophysiology. 93 (3): 283–297. doi:10.1016/j.ijpsycho.2014.06.007. ISSN   0167-8760. PMID   24950132.
  25. Clayson, Peter E.; Larson, Michael J. (2011-06-01). "Conflict adaptation and sequential trial effects: Support for the conflict monitoring theory". Neuropsychologia. 49 (7): 1953–1961. doi:10.1016/j.neuropsychologia.2011.03.023. ISSN   0028-3932. PMID   21435347. S2CID   22832604.
  26. Clayson, Peter E.; Larson, Michael J. (December 2011). "Effects of repetition priming on electrophysiological and behavioral indices of conflict adaptation and cognitive control: Repetition priming effects". Psychophysiology. 48 (12): 1621–1630. doi:10.1111/j.1469-8986.2011.01265.x.
  27. Larson, Michael J.; Clayson, Peter E.; Kirwan, C. Brock; Weissman, Daniel H. (June 2016). "Event-related potential indices of congruency sequence effects without feature integration or contingency learning confounds: ERP indices of the confound-minimized CSE". Psychophysiology. 53 (6): 814–822. doi: 10.1111/psyp.12625 .
  28. Clayson, Peter E.; Shuford, John L.; Rast, Philippe; Baldwin, Scott A.; Weissman, Daniel H.; Larson, Michael J. (2024). "Normal congruency sequence effects in psychopathology: A behavioral and electrophysiological examination using a confound‐minimized design". Psychophysiology. 61 (1). doi:10.1111/psyp.14426. ISSN   0048-5772.