Evans & Sutherland ES-1

Last updated

The ES-1 was Evans & Sutherland's abortive attempt to enter the supercomputer market. It was aimed at technical and scientific users who would normally buy a machine like a Cray-1 but did not need that level of power or throughput for graphics-heavy workloads. About to be released just as the market was drying up in the post-Cold War military wind-down, only a handful were built and only two sold.

Contents

Background

Jean-Yves Leclerc was a computer designer who was unable to find funding in Europe for a high-performance server design. In 1985 he visited Dave Evans, his former PhD. adviser, looking for advice. After some discussion he eventually convinced him that since most of their customers were running E&S graphics hardware on Cray Research machines and other supercomputers, it would make sense if E&S could offer their own low-cost platform instead.

Eventually a new Evans & Sutherland Computer Division, or ESCD, was set up in 1986 to work on the design. Unlike the rest of E&S's operations which are headquartered in Salt Lake City, Utah, it was felt that the computer design would need to be in the "heart of things" in Silicon Valley, and the new division was set up in Mountain View, California.

Basic design

Instead of batch mode number crunching, the design would be tailored specifically to interactive use. This would include a built-in graphics engine and 2 GB of RAM, running BSD Unix 4.2. The machine would offer performance on par with contemporary Cray and ETA Systems. [1]

8 × 8 crossbar

The basic idea of Leclerc's system was to use an 8×8 crossbar switch to connect eight custom CMOS CPUs together at high speed. An extra channel on the crossbar allowed it to be connected to another crossbar, forming a single 16-processor unit. The units were 16-sized (instead of 8) in order to fully utilize a 16-bank high-speed memory that had been designed along with the rest of the system. Since memory was logically organized on the "far side" of the crossbars, the memory controller handled many of the tasks that would normally be left to the processors, including interrupt handling and virtual memory translation, avoiding a trip through the crossbar for these housekeeping tasks.

The resulting 16-unit processor/memory blocks could then be connected using another 8×8 crossbar, creating a 128-processor machine. Although the delays between the 16-unit blocks would be high, if the task could be cleanly separated into units the delay would not have a huge effect on performance. When data did have to be shared across the banks the system balanced the requests; first the "leftmost" processor in the queue would get access, then the "rightmost". Processors added their requests onto the proper end of the queue based on their physical location in the machine. It was felt that the simplicity and speed of this algorithm would make up for the potential gains of a more complex load-balancing system.

Instruction pipeline

In order to allow the system to work even with the high inter-unit latencies, each processor used an 8-deep instruction pipeline. Branches used a variable delay slot, the end of which was signaled by a bit in the next instruction. The bit indicated that the results of the branch had to be re-merged at this point, stalling the processor until this took place. Each processor also included a floating point unit from Weitek. For marketing purposes, each processor was called a "computational unit", and a card-cage populated with 16 was referred to as a "processor". This allowed favorable per-processor performance comparisons with other supercomputers of the era.

The processors ran at 20 MHz in the integer units and 40 MHz for the FPUs, with the intention being to increase this to 50 MHz by the time it shipped. At about 12 Mflops peak per CU, the machine as a whole would deliver up to 1.5 Gflops, although due to the memory latencies this was typically closer to 250 Mflops. While this was fast for a CMOS machine processor of the time, it was hardly competitive for a supercomputer. Nevertheless, the machine was air cooled, and would have been the fastest such machine on the market.

The machine ran an early version of the Mach kernel for multi-processor support. The compilers were designed to keep the processors as full as possible by reducing the number of branch delay slots, and did a particularly good job of it.

Fatal flaw

When it was introduced in 1989, configurations ran from $2 to $8 million, with the largest claimed to run at 1.6 Gflops. In trying to position the machine, Ivan Sutherland noted that their flight simulation systems actually ran at higher speeds, and that the ES-1 was "a step down for us". [2]

When the machine was first announced it was notable for its price/performance ratio. It completely outperformed most competitors machines, at least in theory. With peak performance of 1600 MIPS and a price $2.2 million, it was $1375/MIPS, compared to a contemporary Alliant FX/40 minicomputer at $4650/MIPS. A 1989 Computerworld review of the market for mid-range high-performance machines showed only one machine in the same class, the Connection Machine CM-2. [3]

The new leftmost-rightmost algorithm had a fatal flaw. In high-contention cases the "middle" units would never be serviced, and could stall for thousands of cycles. By 1989, it was clear this was going to need a redesign, but by this point other machines with similar price/performance ratios were coming on the market and the pressure was on to ship immediately. The first two machines were shipped to Caltech in October 1989 [4] and the University of Colorado at Boulder in November, but there were no other immediate sales. One sample ES-1 is in storage at the Computer History Museum.

Evans resigned from the E&S board in 1989, and suddenly the votes turned against continuing the project. E&S looked for a buyer who was interested in continuing the effort, but finding none they instead closed the division in January 1990. [4]

Related Research Articles

<span class="mw-page-title-main">Supercomputer</span> Type of extremely powerful computer

A supercomputer is a type of computer with a high level of performance as compared to a general-purpose computer. The performance of a supercomputer is commonly measured in floating-point operations per second (FLOPS) instead of million instructions per second (MIPS). Since 2017, supercomputers have existed which can perform over 1017 FLOPS (a hundred quadrillion FLOPS, 100 petaFLOPS or 100 PFLOPS). For comparison, a desktop computer has performance in the range of hundreds of gigaFLOPS (1011) to tens of teraFLOPS (1013). Since November 2017, all of the world's fastest 500 supercomputers run on Linux-based operating systems. Additional research is being conducted in the United States, the European Union, Taiwan, Japan, and China to build faster, more powerful and technologically superior exascale supercomputers.

<span class="mw-page-title-main">Cray-1</span> Supercomputer manufactured by Cray Research

The Cray-1 was a supercomputer designed, manufactured and marketed by Cray Research. Announced in 1975, the first Cray-1 system was installed at Los Alamos National Laboratory in 1976. Eventually, eighty Cray-1s were sold, making it one of the most successful supercomputers in history. It is perhaps best known for its unique shape, a relatively small C-shaped cabinet with a ring of benches around the outside covering the power supplies and the cooling system.

Control Data Corporation (CDC) was a mainframe and supercomputer company that in the 1960s was one of the nine major U.S. computer companies, which group included IBM, the Burroughs Corporation, and the Digital Equipment Corporation (DEC), the NCR Corporation (NCR), General Electric, and Honeywell, RCA and UNIVAC. For most of the 1960s, the strength of CDC was the work of the electrical engineer Seymour Cray who developed a series of fast computers, then considered the fastest computing machines in the world; in the 1970s, Cray left the Control Data Corporation and founded Cray Research (CRI) to design and make supercomputers. In 1988, after much financial loss, the Control Data Corporation began withdrawing from making computers and sold the affiliated companies of CDC; in 1992, Cray established Control Data Systems, Inc. The remaining affiliate companies of CDC currently do business as the software company Ceridian.

<span class="mw-page-title-main">Convex Computer</span> American computer manufacturer

Convex Computer Corporation was a company that developed, manufactured and marketed vector minisupercomputers and supercomputers for small-to-medium-sized businesses. Their later Exemplar series of parallel computing machines were based on the Hewlett-Packard (HP) PA-RISC microprocessors, and in 1995, HP bought the company. Exemplar machines were offered for sale by HP for some time, and Exemplar technology was used in HP's V-Class machines.

<span class="mw-page-title-main">ILLIAC IV</span> First massively parallel computer

The ILLIAC IV was the first massively parallel computer. The system was originally designed to have 256 64-bit floating point units (FPUs) and four central processing units (CPUs) able to process 1 billion operations per second. Due to budget constraints, only a single "quadrant" with 64 FPUs and a single CPU was built. Since the FPUs all processed the same instruction – ADD, SUB etc. – in modern terminology, the design would be considered to be single instruction, multiple data, or SIMD.

<span class="mw-page-title-main">Cray X-MP</span> Supercomputer manufactured by Cray Research

The Cray X-MP was a supercomputer designed, built and sold by Cray Research. It was announced in 1982 as the "cleaned up" successor to the 1975 Cray-1, and was the world's fastest computer from 1983 to 1985 with a quad-processor system performance of 800 MFLOPS. The principal designer was Steve Chen.

ETA Systems was a supercomputer company spun off from Control Data Corporation (CDC) in the early 1980s in order to regain a footing in the supercomputer business. They successfully delivered the ETA-10, but lost money continually while doing so. CDC management eventually gave up and folded the company.

<span class="mw-page-title-main">ETA10</span> 1980s supercomputer

The ETA10 is a vector supercomputer designed, manufactured, and marketed by ETA Systems, a spin-off division of Control Data Corporation (CDC). The ETA10 was an evolution of the CDC Cyber 205, which can trace its origins back to the CDC STAR-100, one of the first vector supercomputers to be developed.

Alliant Computer Systems Corporation was a computer company that designed and manufactured parallel computing systems. Together with Pyramid Technology and Sequent Computer Systems, Alliant's machines pioneered the symmetric multiprocessing market. One of the more successful companies in the group, over 650 Alliant systems were produced over their lifetime. The company was hit by a series of financial problems and went bankrupt in 1992.

Pyramid Technology Corporation was a computer company that produced a number of RISC-based minicomputers at the upper end of the performance range. It was based in the San Francisco Bay Area of California

<span class="mw-page-title-main">CDC 8600</span>

The CDC 8600 was the last of Seymour Cray's supercomputer designs while he worked for Control Data Corporation. As the natural successor to the CDC 6600 and CDC 7600, the 8600 was intended to be about 10 times as fast as the 7600, already the fastest computer on the market. The design was essentially four 7600's, packed into a very small chassis so they could run at higher clock speeds.

<span class="mw-page-title-main">CDC STAR-100</span>

The CDC STAR-100 is a vector supercomputer that was designed, manufactured, and marketed by Control Data Corporation (CDC). It was one of the first machines to use a vector processor to improve performance on appropriate scientific applications. It was also the first supercomputer to use integrated circuits and the first to be equipped with one million words of computer memory.

<span class="mw-page-title-main">ASCI Red</span> Supercomputer

ASCI Red was the first computer built under the Accelerated Strategic Computing Initiative (ASCI), the supercomputing initiative of the United States government created to help the maintenance of the United States nuclear arsenal after the 1992 moratorium on nuclear testing.

<span class="mw-page-title-main">Cray-3</span> Supercomputer by Cray research

The Cray-3 was a vector supercomputer, Seymour Cray's designated successor to the Cray-2. The system was one of the first major applications of gallium arsenide (GaAs) semiconductors in computing, using hundreds of custom built ICs packed into a 1 cubic foot (0.028 m3) CPU. The design goal was performance around 16 GFLOPS, about 12 times that of the Cray-2.

<span class="mw-page-title-main">NEC SX-6</span>

The SX-6 is a NEC SX supercomputer built by NEC Corporation that debuted in 2001; the SX-6 was sold under license by Cray Inc. in the U.S. Each SX-6 single-node system contains up to eight vector processors, which share up to 64 GB of computer memory. The SX-6 processor is a single chip implementation containing a vector processor unit and a scalar processor fabricated in a 0.15 μm CMOS process with copper interconnects, whereas the SX-5 was a multi-chip implementation. The Earth Simulator is based on the SX-6 architecture.

The VP2000 was the second series of vector supercomputers from Fujitsu. Announced in December 1988, they replaced Fujitsu's earlier FACOM VP Model E Series. The VP2000 was succeeded in 1995 by the VPP300, a massively parallel supercomputer with up to 256 vector processors.

The Challenge, code-named Eveready and Terminator, is a family of server computers and supercomputers developed and manufactured by Silicon Graphics in the early to mid-1990s that succeeded the earlier Power Series systems. The Challenge was later succeeded by the NUMAlink-based Origin 200 and Origin 2000 in 1996.

The Hitachi SR2201 was a distributed memory parallel system that was introduced in March 1996 by Hitachi. Its processor, the 150 MHz HARP-1E based on the PA-RISC 1.1 architecture, solved the cache miss penalty by pseudo vector processing (PVP). In PVP, data was loaded by prefetching to a special register bank, bypassing the cache. Each processor had a peak performance of 300 MFLOPS, giving the SR2201 a peak performance of 600 GFLOPS. Up to 2048 RISC processors could be connected via a high-speed three-dimensional crossbar network, which was able to transfer data at 300 MB/s over each link.

<span class="mw-page-title-main">History of supercomputing</span>

The history of supercomputing goes back to the 1960s when a series of computers at Control Data Corporation (CDC) were designed by Seymour Cray to use innovative designs and parallelism to achieve superior computational peak performance. The CDC 6600, released in 1964, is generally considered the first supercomputer. However, some earlier computers were considered supercomputers for their day such as the 1954 IBM NORC in the 1950s, and in the early 1960s, the UNIVAC LARC (1960), the IBM 7030 Stretch (1962), and the Manchester Atlas (1962), all of which were of comparable power.

Isra Vision Parsytec AG is a company of Isra Vision, founded in 1985 as Parsytec in Aachen, Germany.

References

Citations

  1. Alper, Alan (11 April 1988). "New face in supercomputing". Computerworld. Vol. XXII, no. 15. p. 9.
  2. Pollack, Andrew (18 July 1989). "High-Speed Computer Introduced" . The New York Times.
  3. "Special-purpose systems". Computerworld . Vol. XXIII, no. 38. 18 September 1989. p. 87.
  4. 1 2 Schreiber & Simon 1992, p. 317.

Bibliography