Evolutionary graph theory is an area of research lying at the intersection of graph theory, probability theory, and mathematical biology. Evolutionary graph theory is an approach to studying how topology affects evolution of a population. That the underlying topology can substantially affect the results of the evolutionary process is seen most clearly in a paper by Erez Lieberman, Christoph Hauert and Martin Nowak. [1]
In evolutionary graph theory, individuals occupy vertices of a weighted directed graph and the weight wi j of an edge from vertex i to vertex j denotes the probability of i replacing j. The weight corresponds to the biological notion of fitness where fitter types propagate more readily. One property studied on graphs with two types of individuals is the fixation probability, which is defined as the probability that a single, randomly placed mutant of type A will replace a population of type B. According to the isothermal theorem, a graph has the same fixation probability as the corresponding Moran process if and only if it is isothermal, thus the sum of all weights that lead into a vertex is the same for all vertices. Thus, for example, a complete graph with equal weights describes a Moran process. The fixation probability is
where r is the relative fitness of the invading type.
Graphs can be classified into amplifiers of selection and suppressors of selection. If the fixation probability of a single advantageous mutation is higher than the fixation probability of the corresponding Moran process then the graph is an amplifier, otherwise a suppressor of selection. One example of the suppressor of selection is a linear process where only vertex i-1 can replace vertex i (but not the other way around). In this case the fixation probability is (where N is the number of vertices) since this is the probability that the mutation arises in the first vertex which will eventually replace all the other ones. Since for all r greater than 1, this graph is by definition a suppressor of selection.
Evolutionary graph theory may also be studied in a dual formulation, as a coalescing random walk, or as a stochastic process. We may consider the mutant population on a graph as a random walk between absorbing barriers representing mutant extinction and mutant fixation. For highly symmetric graphs, we can then use martingales to find the fixation probability as illustrated by Monk (2018).
Also evolutionary games can be studied on graphs where again an edge between i and j means that these two individuals will play a game against each other.
Closely related stochastic processes include the voter model, which was introduced by Clifford and Sudbury (1973) and independently by Holley and Liggett (1975), and which has been studied extensively.
Brownian motion, or pedesis, is the random motion of particles suspended in a medium.
In mathematics, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices which are connected by edges. A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics.
In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem, and uses a specified set of generators for the group. It is a central tool in combinatorial and geometric group theory. The structure and symmetry of Cayley graphs makes them particularly good candidates for constructing families of expander graphs.
In mathematics, random graph is the general term to refer to probability distributions over graphs. Random graphs may be described simply by a probability distribution, or by a random process which generates them. The theory of random graphs lies at the intersection between graph theory and probability theory. From a mathematical perspective, random graphs are used to answer questions about the properties of typical graphs. Its practical applications are found in all areas in which complex networks need to be modeled – many random graph models are thus known, mirroring the diverse types of complex networks encountered in different areas. In a mathematical context, random graph refers almost exclusively to the Erdős–Rényi random graph model. In other contexts, any graph model may be referred to as a random graph.
In mathematics, loop-erased random walk is a model for a random simple path with important applications in combinatorics and, in physics, quantum field theory. It is intimately connected to the uniform spanning tree, a model for a random tree. See also random walk for more general treatment of this topic.
In the mathematical field of graph theory, the Laplacian matrix, also called the graph Laplacian, admittance matrix, Kirchhoff matrix or discrete Laplacian, is a matrix representation of a graph. Named after Pierre-Simon Laplace, the graph Laplacian matrix can be viewed as a matrix form of the negative discrete Laplace operator on a graph approximating the negative continuous Laplacian obtained by the finite difference method.
In graph theory, an edge cover of a graph is a set of edges such that every vertex of the graph is incident to at least one edge of the set. In computer science, the minimum edge cover problem is the problem of finding an edge cover of minimum size. It is an optimization problem that belongs to the class of covering problems and can be solved in polynomial time.
In the mathematical area of graph theory, Kőnig's theorem, proved by Dénes Kőnig (1931), describes an equivalence between the maximum matching problem and the minimum vertex cover problem in bipartite graphs. It was discovered independently, also in 1931, by Jenő Egerváry in the more general case of weighted graphs.
Reciprocity in evolutionary biology refers to mechanisms whereby the evolution of cooperative or altruistic behaviour may be favoured by the probability of future mutual interactions. A corollary is how a desire for revenge can harm the collective and therefore be naturally deselected.
In finance, the Heston model, named after Steven L. Heston, is a mathematical model that describes the evolution of the volatility of an underlying asset. It is a stochastic volatility model: such a model assumes that the volatility of the asset is not constant, nor even deterministic, but follows a random process.
In the mathematical field of graph theory, the Erdős–Rényi model is either of two closely related models for generating random graphs or the evolution of a random network. They are named after Hungarian mathematicians Paul Erdős and Alfréd Rényi, who first introduced one of the models in 1959, while Edgar Gilbert introduced the other model contemporaneously and independently of Erdős and Rényi. In the model of Erdős and Rényi, all graphs on a fixed vertex set with a fixed number of edges are equally likely; in the model introduced by Gilbert, also called the Erdős–Rényi–Gilbert model, each edge has a fixed probability of being present or absent, independently of the other edges. These models can be used in the probabilistic method to prove the existence of graphs satisfying various properties, or to provide a rigorous definition of what it means for a property to hold for almost all graphs.
In queueing theory, a discipline within the mathematical theory of probability, the Pollaczek–Khinchine formula states a relationship between the queue length and service time distribution Laplace transforms for an M/G/1 queue. The term is also used to refer to the relationships between the mean queue length and mean waiting/service time in such a model.
In queueing theory, a discipline within the mathematical theory of probability, an M/M/1 queue represents the queue length in a system having a single server, where arrivals are determined by a Poisson process and job service times have an exponential distribution. The model name is written in Kendall's notation. The model is the most elementary of queueing models and an attractive object of study as closed-form expressions can be obtained for many metrics of interest in this model. An extension of this model with more than one server is the M/M/c queue.
In mathematics, the concept of graph dynamical systems can be used to capture a wide range of processes taking place on graphs or networks. A major theme in the mathematical and computational analysis of GDSs is to relate their structural properties and the global dynamics that result.
A Moran process or Moran model is a simple stochastic process used in biology to describe finite populations. The process is named after Patrick Moran, who first proposed the model in 1958. It can be used to model variety-increasing processes such as mutation as well as variety-reducing effects such as genetic drift and natural selection. The process can describe the probabilistic dynamics in a finite population of constant size N in which two alleles A and B are competing for dominance. The two alleles are considered to be true replicators.
In applied mathematics, lambda-connectedness deals with partial connectivity for a discrete space.
In probability theory, an interacting particle system (IPS) is a stochastic process on some configuration space given by a site space, a countable-infinite graph and a local state space, a compact metric space . More precisely IPS are continuous-time Markov jump processes describing the collective behavior of stochastically interacting components. IPS are the continuous-time analogue of stochastic cellular automata.
In quantum probability, the Belavkin equation, also known as Belavkin-Schrödinger equation, quantum filtering equation, stochastic master equation, is a quantum stochastic differential equation describing the dynamics of a quantum system undergoing observation in continuous time. It was derived and henceforth studied by Viacheslav Belavkin in 1988.
The stochastic block model is a generative model for random graphs. This model tends to produce graphs containing communities, subsets of nodes characterized by being connected with one another with particular edge densities. For example, edges may be more common within communities than between communities. Its mathematical formulation has been firstly introduced in 1983 in the field of social network by Holland et al. The stochastic block model is important in statistics, machine learning, and network science, where it serves as a useful benchmark for the task of recovering community structure in graph data.
Maximal entropy random walk (MERW) is a popular type of biased random walk on a graph, in which transition probabilities are chosen accordingly to the principle of maximum entropy, which says that the probability distribution which best represents the current state of knowledge is the one with largest entropy. While standard random walk chooses for every vertex uniform probability distribution among its outgoing edges, locally maximizing entropy rate, MERW maximizes it globally by assuming uniform probability distribution among all paths in a given graph.