Exobasidium vexans | |
---|---|
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Fungi |
Division: | Basidiomycota |
Class: | Exobasidiomycetes |
Order: | Exobasidiales |
Family: | Exobasidiaceae |
Genus: | Exobasidium |
Species: | E. vexans |
Binomial name | |
Exobasidium vexans Massee, (1898) | |
Exobasidium vexans is a plant pathogen affecting tea ("Camellia sinensis").
Blister blight caused by Exobasidium vexans is a devastating leaf disease in tea ( Camellia sinensis ) in almost all tea growing regions in Asia. This disease causes serious crop losses under inclement weather conditions besides affecting quality of made tea. Although tea cultivars show varying degrees of resistance/susceptibility to blister blight, a cultivar showing total resistance to blister blight has not yet been identified. [1]
The mature two-celled basidiospores are very easily dislodged from the sterigmata and are usually to be found on the surface of the blister. In carefully collected material we have seen the mature two-celled basidiospores attached to sterigmata. Although the basidiospore is normally one-septate, as many as three septa have been seen in germinated spores. The view is expressed that the extra septa are normally formed during germination. [2]
Exobasidium vexans is an obligate pathogen of Camellia sinensis, causing a disease commonly known as Tea Blister Blight. Blister is the any several disease caused by leaf curl fungi of genus . It thrives in tea growing regions of Asia with elevations over 700 m and high relative humidity. E. vexans prefers to attack the young leaves on the lower half of hosts and presents as small yellow translucent leaf spots which progress to lesions. These lesions give the lower surface of the leaf the characteristic blister like appearance. Spores are wind dispersed and readily germinate, usually within 24 hours. E. vexans can enter the host plant via the stomata or direct penetration with an appressoria and growth proliferates intracellularly. E. vexans is the most economically significant tea pathogen in many countries, causing up to 50% crop yield loss when uncontrolled. (Mur et al. 2015, Ajay et al. 2009) Tea Blister Blight infection affects the production of multiple metabolites within the plant, including the reduction of alkaloid caffeine, which has a key role in plant defense. (Mur et al. 2015)
Exobasidium vexans is an obligate pathogen of tea, which makes the study of it difficult. It thrives in humid high elevations in Asia. Atmospheric spore concentrations are present throughout the year, but are lowest January through May when relative humidity and rainfall is decreased, and direct sunlight duration is increased. During these months it has been found to produce abnormally thick walled spores, in addition to the usual basidiospores, that resist germination in vitro. (Ajay et al. 2009) The wet season in tea growing regions runs June through December and creates conditions favorable to endemic infection. Basidiospores produced by E. vexans are sensitive to sunlight and humidity. A wet leaf surface environment of 11 hours or more per day is critical in pathogen propagation. (Ajay et al. 2009) When conditions are favorable the full fungal life cycle can be completed in as little as 11 days.
Detection of tea blister blight is done via a visual inspection of the crop plants for the characteristic blisters. There are many methods of control throughout Asia, with varying levels of success. Most frequently fungicides such as carbendazim, hexaconazole, propiconazole, and tridemorph are used. A 0.2% mixture of nickel sulfate or copper oxide can be applied to foliage to control spread as well. Application of diluted polyoxin, an antibiotic, has also had some success at control and inhibition of the disease. Due to the short life cycle of E. vexans it is critical to apply chemicals weekly when conditions are favorable for disease. The basidiospores of this pathogen are very sensitive, direct sunlight in excess of 4 hours will readily destroy them, therefore other agricultural methods (such as planting rows greater distances apart to allow sunlight to penetrate to young target leaves) can be helpful in controlling disease spread.
Rusts are fungal plant pathogens of the order Pucciniales causing plant fungal diseases.
The Oomycetes, or Oomycota, form a distinct phylogenetic lineage of fungus-like eukaryotic microorganisms within the Stramenopiles. They are filamentous and heterotrophic, and can reproduce both sexually and asexually. Sexual reproduction of an oospore is the result of contact between hyphae of male antheridia and female oogonia; these spores can overwinter and are known as resting spores. Asexual reproduction involves the formation of chlamydospores and sporangia, producing motile zoospores. Oomycetes occupy both saprophytic and pathogenic lifestyles, and include some of the most notorious pathogens of plants, causing devastating diseases such as late blight of potato and sudden oak death. One oomycete, the mycoparasite Pythium oligandrum, is used for biocontrol, attacking plant pathogenic fungi. The oomycetes are also often referred to as water molds, although the water-preferring nature which led to that name is not true of most species, which are terrestrial pathogens.
Cronartium ribicola is a species of rust fungus in the family Cronartiaceae that causes the disease white pine blister rust. Other names include: Rouille vésiculeuse du pin blanc (French), white pine Blasenrost (German), moho ampolla del pino blanco (Spanish).
Rhizoctonia solani is a species of fungus in the order Cantharellales. Basidiocarps are thin, effused, and web-like, but the fungus is more typically encountered in its anamorphic state, as hyphae and sclerotia. The name Rhizoctonia solani is currently applied to a complex of related species that await further research. In its wide sense, Rhizoctonia solani is a facultative plant pathogen with a wide host range and worldwide distribution. It causes various plant diseases such as root rot, damping off, and wire stem. It can also form mycorrhizal associations with orchids.
Damping off is a horticultural disease or condition, caused by several different pathogens that kill or weaken seeds or seedlings before or after they germinate. It is most prevalent in wet and cool conditions.
Glomerella graminicola is an economically important crop parasite affecting both wheat and maize where it causes the plant disease Anthracnose Leaf Blight.
Ascochyta tarda or Phoma tarda is a fungal plant pathogen that causes dieback and leafspot on coffee and was first observed in Ethiopia in 1954. It poses a potentially serious threat to coffee crops, but climate change may reduce the prevalence of environmental conditions favorable to its spread.
Puccinia schedonnardii is a basidiomycete fungus that affects cotton. More commonly known as a “rust,” this pathogen typically affects cotton leaves, which can decrease the quality of the boll at time of harvest. As large percentages of cotton in the United States are resistant to various rust varieties, there is little economic importance to this disease. In places where rust is prevalent, however, growers could see up to a 50% reduction in yield due to rust infection.
Pseudopestalotiopsis theae is a plant pathogen affecting tea.
Albugo is a genus of plant-parasitic oomycetes. Those are not true fungi (Eumycota), although many discussions of this organism still treat it as a fungus. The taxonomy of this genus is incomplete, but several species are plant pathogens. Albugo is one of three genera currently described in the family Albuginaceae, the taxonomy of many species is still in flux.
Alternaria solani is a fungal pathogen that produces a disease in tomato and potato plants called early blight. The pathogen produces distinctive "bullseye" patterned leaf spots and can also cause stem lesions and fruit rot on tomato and tuber blight on potato. Despite the name "early," foliar symptoms usually occur on older leaves. If uncontrolled, early blight can cause significant yield reductions. Primary methods of controlling this disease include preventing long periods of wetness on leaf surfaces and applying fungicides. Early blight can also be caused by Alternaria tomatophila, which is more virulent on stems and leaves of tomato plants than Alternaria solani.
Puccinia menthae is a fungal plant pathogen that causes rust on mint plants. It was originally found on the leaves of Mentha aquatica.
Ascochyta pisi is a fungal plant pathogen that causes ascochyta blight on pea, causing lesions of stems, leaves, and pods. These same symptoms can also be caused by Ascochyta pinodes, and the two fungi are not easily distinguishable.
Alternaria dianthi, sometimes known as carnation blight, is a fungal pathogen of the genus Dianthus. Alternaria dianthi infections begin as small circular or ovular spots on leaves and stems, which can be red, purple, brown, yellow or gray.
Alternaria helianthi is a fungal plant pathogen causing a disease in sunflowers known as Alternaria blight of sunflower.
Grey leaf spot (GLS) is a foliar fungal disease that affects maize, also known as corn. GLS is considered one of the most significant yield-limiting diseases of corn worldwide. There are two fungal pathogens that cause GLS: Cercospora zeae-maydis and Cercospora zeina. Symptoms seen on corn include leaf lesions, discoloration (chlorosis), and foliar blight. Distinct symptoms of GLS are rectangular, brown to gray necrotic lesions that run parallel to the leaf, spanning the spaces between the secondary leaf veins. The fungus survives in the debris of topsoil and infects healthy crops via asexual spores called conidia. Environmental conditions that best suit infection and growth include moist, humid, and warm climates. Poor airflow, low sunlight, overcrowding, improper soil nutrient and irrigation management, and poor soil drainage can all contribute to the propagation of the disease. Management techniques include crop resistance, crop rotation, residue management, use of fungicides, and weed control. The purpose of disease management is to prevent the amount of secondary disease cycles as well as to protect leaf area from damage prior to grain formation. Corn grey leaf spot is an important disease of corn production in the United States, economically significant throughout the Midwest and Mid-Atlantic regions. However, it is also prevalent in Africa, Central America, China, Europe, India, Mexico, the Philippines, northern South America, and Southeast Asia. The teleomorph of Cercospora zeae-maydis is assumed to be Mycosphaerella sp.
Southern corn leaf blight (SCLB) is a fungal disease of maize caused by the plant pathogen Bipolaris maydis.
Cladosporium fulvum is an Ascomycete called Passalora fulva, a non-obligate pathogen that causes the disease on tomatoes known as the tomato leaf mold. P. fulva only attacks tomato plants, especially the foliage, and it is a common disease in greenhouses, but can also occur in the field. The pathogen is likely to grow in humid and cool conditions. In greenhouses, this disease causes big problems during the fall, in the early winter and spring, due to the high relative humidity of air and the temperature, that are propitious for the leaf mold development. This disease was first described in the North Carolina, by Mordecai Cubitt Cooke (1883), on cultivated tomato, although it is originally from South and Central America. The causal fungus of tomato leaf mold may also be referred to as Cladosporium fulvum, a former name.
Exobasidium camelliae is a phytopathagenic fungus that infects ornamental shrubs of the Camellia genus. It absorbs nutrients from the host through its haustoria and causes the leaves of the host plant to be thicker and lighter green than usual. It forms a hymenium between cells four to six layers above the lower epidermis which is subsequently sloughed off to reveal its basidia.
{{cite web}}
: CS1 maint: archived copy as title (link)