Exotic R4

Last updated

In mathematics, an exotic is a differentiable manifold that is homeomorphic (i.e. shape preserving) but not diffeomorphic (i.e. non smooth) to the Euclidean space The first examples were found in 1982 by Michael Freedman and others, by using the contrast between Freedman's theorems about topological 4-manifolds, and Simon Donaldson's theorems about smooth 4-manifolds. [1] [2] There is a continuum of non-diffeomorphic differentiable structures of as was shown first by Clifford Taubes. [3]

Contents

Prior to this construction, non-diffeomorphic smooth structures on spheres  exotic spheres  were already known to exist, although the question of the existence of such structures for the particular case of the 4-sphere remained open (and still remains open as of 2023). For any positive integer n other than 4, there are no exotic smooth structures on in other words, if n ≠ 4 then any smooth manifold homeomorphic to is diffeomorphic to [4]

Small exotic R4s

An exotic is called small if it can be smoothly embedded as an open subset of the standard

Small exotic can be constructed by starting with a non-trivial smooth 5-dimensional h-cobordism (which exists by Donaldson's proof that the h-cobordism theorem fails in this dimension) and using Freedman's theorem that the topological h-cobordism theorem holds in this dimension.

Large exotic R4s

An exotic is called large if it cannot be smoothly embedded as an open subset of the standard

Examples of large exotic can be constructed using the fact that compact 4-manifolds can often be split as a topological sum (by Freedman's work), but cannot be split as a smooth sum (by Donaldson's work).

Michael HartleyFreedmanandLaurence R. Taylor ( 1986 ) showed that there is a maximal exotic into which all other can be smoothly embedded as open subsets.

Casson handles are homeomorphic to by Freedman's theorem (where is the closed unit disc) but it follows from Donaldson's theorem that they are not all diffeomorphic to In other words, some Casson handles are exotic

It is not known (as of 2022) whether or not there are any exotic 4-spheres; such an exotic 4-sphere would be a counterexample to the smooth generalized Poincaré conjecture in dimension 4. Some plausible candidates are given by Gluck twists.

See also

Notes

  1. Kirby (1989), p. 95
  2. Freedman and Quinn (1990), p. 122
  3. Taubes (1987), Theorem 1.1
  4. Stallings (1962), in particular Corollary 5.2
  5. Asselmeyer-Maluga, Torsten; Król, Jerzy (2014-08-28). "Abelian gerbes, generalized geometries and foliations of small exotic R^4". arXiv: 0904.1276 [hep-th].

Related Research Articles

<span class="mw-page-title-main">Differential topology</span> Branch of mathematics

In mathematics, differential topology is the field dealing with the topological properties and smooth properties of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which concerns the geometric properties of smooth manifolds, including notions of size, distance, and rigid shape. By comparison differential topology is concerned with coarser properties, such as the number of holes in a manifold, its homotopy type, or the structure of its diffeomorphism group. Because many of these coarser properties may be captured algebraically, differential topology has strong links to algebraic topology.

<span class="mw-page-title-main">Diffeomorphism</span> Isomorphism of smooth manifolds; a smooth bijection with a smooth inverse

In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable.

In mathematics, specifically in differential topology, Morse theory enables one to analyze the topology of a manifold by studying differentiable functions on that manifold. According to the basic insights of Marston Morse, a typical differentiable function on a manifold will reflect the topology quite directly. Morse theory allows one to find CW structures and handle decompositions on manifolds and to obtain substantial information about their homology.

<span class="mw-page-title-main">Cobordism</span>

In mathematics, cobordism is a fundamental equivalence relation on the class of compact manifolds of the same dimension, set up using the concept of the boundary of a manifold. Two manifolds of the same dimension are cobordant if their disjoint union is the boundary of a compact manifold one dimension higher.

<span class="mw-page-title-main">Geometric topology</span> Branch of mathematics studying (smooth) functions of manifolds

In mathematics, geometric topology is the study of manifolds and maps between them, particularly embeddings of one manifold into another.

<span class="mw-page-title-main">Low-dimensional topology</span> Branch of topology

In mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the structure theory of 3-manifolds and 4-manifolds, knot theory, and braid groups. This can be regarded as a part of geometric topology. It may also be used to refer to the study of topological spaces of dimension 1, though this is more typically considered part of continuum theory.

In mathematics, an n-dimensional differential structure on a set M makes M into an n-dimensional differential manifold, which is a topological manifold with some additional structure that allows for differential calculus on the manifold. If M is already a topological manifold, it is required that the new topology be identical to the existing one.

<span class="mw-page-title-main">Handle decomposition</span>

In mathematics, a handle decomposition of an m-manifold M is a union

In an area of mathematics called differential topology, an exotic sphere is a differentiable manifold M that is homeomorphic but not diffeomorphic to the standard Euclidean n-sphere. That is, M is a sphere from the point of view of all its topological properties, but carrying a smooth structure that is not the familiar one.

In mathematics, a 4-manifold is a 4-dimensional topological manifold. A smooth 4-manifold is a 4-manifold with a smooth structure. In dimension four, in marked contrast with lower dimensions, topological and smooth manifolds are quite different. There exist some topological 4-manifolds which admit no smooth structure, and even if there exists a smooth structure, it need not be unique.

In mathematics, more specifically differential topology, a local diffeomorphism is intuitively a map between Smooth manifolds that preserves the local differentiable structure. The formal definition of a local diffeomorphism is given below.

<span class="mw-page-title-main">Manifold</span> Topological space that locally resembles Euclidean space

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space.

In mathematics, and especially differential topology and gauge theory, Donaldson's theorem states that a definite intersection form of a compact, oriented, smooth manifold of dimension 4 is diagonalisable. If the intersection form is positive (negative) definite, it can be diagonalized to the identity matrix over the integers. The original version of the theorem required the manifold to be simply connected, but it was later improved to apply to 4-manifolds with any fundamental group.

In mathematics, a Hilbert manifold is a manifold modeled on Hilbert spaces. Thus it is a separable Hausdorff space in which each point has a neighbourhood homeomorphic to an infinite dimensional Hilbert space. The concept of a Hilbert manifold provides a possibility of extending the theory of manifolds to infinite-dimensional setting. Analogously to the finite-dimensional situation, one can define a differentiable Hilbert manifold by considering a maximal atlas in which the transition maps are differentiable.

In 4-dimensional topology, a branch of mathematics, a Casson handle is a 4-dimensional topological 2-handle constructed by an infinite procedure. They are named for Andrew Casson, who introduced them in about 1973. They were originally called "flexible handles" by Casson himself, and Michael Freedman (1982) introduced the name "Casson handle" by which they are known today. In that work he showed that Casson handles are topological 2-handles, and used this to classify simply connected compact topological 4-manifolds.

In the mathematical area of topology, the generalized Poincaré conjecture is a statement that a manifold which is a homotopy sphere is a sphere. More precisely, one fixes a category of manifolds: topological (Top), piecewise linear (PL), or differentiable (Diff). Then the statement is

In differential topology, a branch of mathematics, a Mazur manifold is a contractible, compact, smooth four-dimensional manifold which is not diffeomorphic to the standard 4-ball. The boundary of a Mazur manifold is necessarily a homology 3-sphere.

In topology, an Akbulut cork is a structure that is frequently used to show that in 4-dimensions, the smooth h-cobordism theorem fails. It was named after Turkish mathematician Selman Akbulut.

In mathematics, the surgery structure set is the basic object in the study of manifolds which are homotopy equivalent to a closed manifold X. It is a concept which helps to answer the question whether two homotopy equivalent manifolds are diffeomorphic. There are different versions of the structure set depending on the category and whether Whitehead torsion is taken into account or not.

In mathematics, the annulus theorem states roughly that the region between two well-behaved spheres is an annulus. It is closely related to the stable homeomorphism conjecture which states that every orientation-preserving homeomorphism of Euclidean space is stable.

References